Skip to main content

Ventricular Pressure-Volume Relations Demonstrate Positive Inotropic Effect of Increased Arterial Impedance

  • Chapter

Summary

The influence of different types of loading intervention on the end-systolic pressure-volume relation (ESPVR) of the left ventricle (LV) in situ was investigated in anesthetized open-chest dogs. LV volume was measured by conductance catheter. Two loading interventions were applied: a pressure intervention (INp) by gradually occluding the descending aorta, and a volume intervention (INv) by rapidly infusing 180 ml blood intathe vena cava. The P-V loops during an intervention always showed a linear ESPVR, the slope of which, Ees, was calculated. Results from 16 dogs show that Ees(INp) was always larger (1.37 ± 0.45 kPa/ml) than Ees(INv) (0.73 ± 0.32 kPa/ml) (P<.001). This difference was enhanced by beta-blockade through metoprolol. The same phenomenon was found for the slope (SdPV) of the relation between dP/dtmax and EDV: SdPV(INp) = 45.17 ± 22.63 kPa/ml per s and SdPV(INv) = 20.55 ± 11.13 kPa/ml per s (P <.001).

Since INv increases stroke volume while INp decreases it, the results can be explained in part by shortening deactivation. However, the similar behavior of SdPV as compared to Ees suggests that INp leads to an increased inotropic state with respect to INv. We speculate that an intrinsic myocardial mechanism related to changes in calcium turnover forms the basis of this phenomenon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakatta EG (1987) Starling’s law of the heart is explained by an intimate interaction of muscle length and myofilament calcium activation. J Am Coll Cardial 10: 1157–1164

    Article  CAS  Google Scholar 

  2. Parmley WW, Brutsaert DL, Sonnenblick EH (1969) Effects of altered loading on contractile events in isolated cat papillary muscle. Circ Res 24: 521–532

    PubMed  CAS  Google Scholar 

  3. Paulus WJ, Claes VA, Brutsaert DL (1980) End-systolic pressure-volume relation estimated from physiologically loaded cat papillary muscle contractions. Circ Res 47: 20–26

    PubMed  CAS  Google Scholar 

  4. Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure/volume ratio: a new index of contractility. Am J Cardiol 40: 748–753

    Article  PubMed  CAS  Google Scholar 

  5. Kass DA, Maughan WL (1988) From ‘Emax’ to pressure-volume relations: a broader view. Perspective. Circulation 77: 1203–1212

    Article  PubMed  CAS  Google Scholar 

  6. Baan J, Van Der Velde ET, De Bruin HG, Smeenk GJ, Koops J, Van Dijk AD, Temmerman D, Senden PJ, Buis B (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70: 812–823

    Article  PubMed  CAS  Google Scholar 

  7. Thormann J, Kramer W, Kindler M, Kremer P, Schlepper M (1987) Bestimmung der Wirkkomponenten von Amrinon durch kontinuierliche Analyse der Druck-Volumen-Beziehungen; Anwendung der Conductance (Volumen-) Kathetertechnik und der schnellen Laständerung durch Ballonokklusion der Vena cava inferior. Z Kardiol 76: 530–540

    PubMed  CAS  Google Scholar 

  8. Baan J, Van Der Velde ET (1988) Sensitivity of left ventricular end-systolic pressure-volume relation to the type of loading intervention in dogs. Circ Res 62: 1247–1258

    PubMed  CAS  Google Scholar 

  9. Burkhoff D, Van Der Velde ET, Kass D, Baan J, Maughan WL, Sagawa K (1985) Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts. Circulation 72: 440–447

    Article  PubMed  CAS  Google Scholar 

  10. Little WC (1985) The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res 56: 808–815

    PubMed  CAS  Google Scholar 

  11. Suga H, Sagawa K, Shoukas A (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32: 314–322

    PubMed  CAS  Google Scholar 

  12. Kass DA, Yamazaki T, Burkhoff D. Maughan WL, Sagawa K (1986) Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation 73: 586–595

    Article  PubMed  CAS  Google Scholar 

  13. Spratt JA, Tyson GS, Glower DD, Davis JW, Muhlbaier LH, Olsen CO, Rankin JS (1987) The end-systolic pressure-volume relationship in conscious dogs. Circulation 75: 1295–1309

    Article  PubMed  CAS  Google Scholar 

  14. Burkhoff D, Sugiura S, Yue DT, Sagawa K (1987) Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol 252: H1218–1227

    PubMed  CAS  Google Scholar 

  15. Van der Velde ET, Burkhoff D, Steendijk P, Sagawa K, Baan J (1988) Afterload sensitivity and nonlinearity of the end-systolic pressure-volume relation in dogs. Circulation 78:11–68

    Google Scholar 

  16. Suga H, Yamakoshi K (1977) Effects of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle. End-systolic volume clamping. Circ Res 40: 445–450

    PubMed  CAS  Google Scholar 

  17. Igarashi Y, Goto Y, Yamada O, Ishii T, Suga H (1987) Transient vs steady state end-systolic pressure-volume relation in dog left ventricle. Am J Physiol 252: H998-H1004

    PubMed  CAS  Google Scholar 

  18. Meiss RA, Sonnenblick EH (1972) Controlled shortening in heart muscle: velocity-force and active state properties. Am J Physiol 222: 630–639

    PubMed  CAS  Google Scholar 

  19. Hunter WC, Burkhoff D, Oikawa R, Sagawa K (1985) Evidence for a mechanism opposing deactivation during ejection in canine left ventricles. Fred Proc 44: 1736

    Google Scholar 

  20. Van Der Linden LP, Van Der Velde ET, Bruschke AVG, Baan J (1988) Identifiability of left ventricular end-systolic pressure-volume relationships. Am J Physiol 254: H1113–H1124

    PubMed  Google Scholar 

  21. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 14: H773–H780

    Google Scholar 

  22. Yue DT (1987) Intracellular. [Ca2+] related to rate of force development in twitch contraction of heart. Am J Physiol 252: H760–H770

    PubMed  CAS  Google Scholar 

  23. Baan J, Van Der Velde ET, Van Der Linden LP (1987) Aortic occlusion leads to larger left ventricular elastance (Ees) and DP/DTmax than venous loading in dogs. Automedica 9: 238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Baan, J., van der Velde, E.T. (1989). Ventricular Pressure-Volume Relations Demonstrate Positive Inotropic Effect of Increased Arterial Impedance. In: Hori, M., Suga, H., Baan, J., Yellin, E.L. (eds) Cardiac Mechanics and Function in the Normal and Diseased Heart. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67957-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67957-8_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68020-8

  • Online ISBN: 978-4-431-67957-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics