Determinants of Diastolic Function

  • Stanton A. Glantz
  • John C. Gilbert


The original concept of diastolic function of the left ventricle was that the pressure within the left ventricle is determined by the balance between the forces due to pressures within the ventricular cavity that expand the ventricle and forces due to elasticity of the myocardium that resist this expansion. While this concept remains the centrepiece of our understanding of the diastolic pressure-volume relationship, it is now clear that several other factors play a role. During early diastole changes in the rate of active relaxation of the myocardium and so-called diastolic suction are important. During late diastole (and at end-diastole) the extent of relaxation, mechanical interaction between the ventricles modulated by the pericadium, and the pericardium itself are important (Fig. 1). Other factors — pulmonary-cardiac contact pressure, viscoelasticity of the myocardium, and engorgement of the coronary vasculature — are less important in determining the left ventricular diastolic pressure-volume relationship.


Left Ventricle Diastolic Function Ventricular Interaction Pericardial Pressure Pressure Overload Hypertrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilbert JG, Glantz SA (to be published) Determinants of left ventricular filling and the diastolic pressure-volume relationship. Circ ResGoogle Scholar
  2. 2.
    Peterson KL, Tsuji J, Johnson A, DiDonna J, LeWinter M (1978) Diastolic left ventricular pressure-volume and stress-strain relations in patients with valvular aortic stenosis and left ventricular hypertrophy. Circulation 58: 77–89PubMedGoogle Scholar
  3. 3.
    Rippe JM, Pape LA, Alpert JA, Ockene IS, Paraskos JA, Kotilainen P, Anas J, Webster W (1982) Studies of systolic mechanics and diastolic behavior on the left ventricle in the trained racing greyhound. Basic Res Cardiol 77: 619–644PubMedCrossRefGoogle Scholar
  4. 4.
    Nomura S (1986) Diastolic property of left ventricle under experimental volume overload. Jpn Circ J 50: 426–432PubMedCrossRefGoogle Scholar
  5. 5.
    Michel JB, Salzmann JL, Ossondo Nlom M, Bruneval P, Barres D, Camilleri JP (1986) Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res Cardiol 81: 142–154PubMedCrossRefGoogle Scholar
  6. 6.
    Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56: 56–64PubMedCrossRefGoogle Scholar
  7. 7.
    Florenzano F, Glantz SA (1987) Left-ventricular mechanical adaptations to chronic aortic regurgitation in intact dogs. Am J Physiol 252: H969–H984PubMedGoogle Scholar
  8. 8.
    Fagard R, van den Broekle C, Bielen E, Vabhees L, Amery A (1987) Assessment of stiffness of the hypertrophied left ventricle of bicyclists using left ventricular inflow Doppler velocimetry. J Am Coll Cardiol 9: 1250–1254PubMedCrossRefGoogle Scholar
  9. 9.
    Grossman W, McLaurin LP, Stefadouros MA (1974) Left ventricular stiffness associated with chronic pressure and volume overloads in man. Circ Res 35: 793–800PubMedGoogle Scholar
  10. 10.
    Thiedemann KU, Holubarsch C, Medugorac I, Jacob R (1983) Connective tissue (content and myocardial stiffness in pressure overload hypertrophy: A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res Cardiol 78: 140–155PubMedCrossRefGoogle Scholar
  11. 11.
    Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI (1988) Collagen remodeling of pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62: 757–765PubMedGoogle Scholar
  12. 12.
    McLaurin LP, Rolett EL, Grossman W (1973) Impaired left ventricular relaxation during pacing-induced ischemia. Am J Cardiol 32: 751–757PubMedCrossRefGoogle Scholar
  13. 13.
    Mann T, Brodie BR, Grossman W, McLaurin LT (1977) Effect of angina on the left ventricular diastolic pressure-volume relationship. Circulation 55: 761–766PubMedGoogle Scholar
  14. 14.
    Grossman W, Mann JT (1978) Evidence for impaired left ventricular relaxation during acute ischemia in man. Euro J Cardiol 7 (Suppl): 239–249Google Scholar
  15. 15.
    Bourdillon PD, Paulus WJ, Serizawa T, Grossman W (1986) Effects of verapamil on regional myocardial diastolic function in pacing-induced ischemia in dogs. Am J Physiol 251: H834–H840PubMedGoogle Scholar
  16. 16.
    Sasayama S, Nonogi H, Fujita M, Sakurai T, Wakabayashi A, Kawai C, Eiho S, Kuwahara M (1984) Analysis Of asychronous wall motion by regional pressure-length loops in patients with coronary artery disease. J Am Coll Cardiol 4: 259–267PubMedCrossRefGoogle Scholar
  17. 17.
    Carroll JD, Lang RM, Neumann AL, Borow KM, Rajfer SI (1986) The differential effects or positive inotropic and vasodilator therapy on diastolic properties in patients with congestive cardiomyopathy. Circulation 74: 815–825PubMedCrossRefGoogle Scholar
  18. 18.
    Palacios I, Johnson RA, Newell JB, Powell WJ Jr (1976) Left ventricular end-diastolic pressure-volume relationship with experimental acute global ischemia. Circulation 53: 428–436PubMedGoogle Scholar
  19. 19.
    Smiseth OA, Kingma I, Refsum H, Smith ER, Tyberg JV (1985) The pericardial hypothesis: A mechanism of acute shifts of the left ventricular diastolic pressure-volume relation. Clin Physiol 5: 403–415PubMedCrossRefGoogle Scholar
  20. 20.
    Serizawa T, Carabello BA, Grossman W (1980) Effect of pacing-induced ischemia on left ventricular diastolic pressure-volume relations in dogs with coronary stenoses. Circ Res 46:430–439PubMedGoogle Scholar
  21. 21.
    Paulus WJ, Serizawa T, Grossman W (1982) Altered left ventricular diastolic properties during pacing-induced ischemia in dogs with coronary stenosis potentiation by caffeine. Circ Res 50: 218–227PubMedGoogle Scholar
  22. 22.
    Nayler WG, Williams A (1978) Relaxation in heart muscle: some morphological and biochemical considerations. Eur J Cardiol 7 (Suppl): 35–50PubMedGoogle Scholar
  23. 23.
    Nayler WG, Poole-Wilson PA, Williams A (1979) Hypoxia and calcium. J Mol Cell Cardiol 11: 683–706PubMedCrossRefGoogle Scholar
  24. 24.
    Carroll JD, Hess OM, Hirzel HO, Krayenbuehl HP (1983) Exercise-induced ischemia: the influence of altered relaxation on early diastolic pressures. Circulation 67(3): 521–528PubMedCrossRefGoogle Scholar
  25. 25.
    Serruys PW, Wijns W, Piscione F, de Feyter P, Hugenholtz PG (1988) Ejection, filling, and diastasis during transluminal occlusion in man: consideration on global and regional left ventricular function. In: Grossman W, Lorell BH (eds) Diastolic relaxation of the heart. Martinus Nijhoff, Boston, pp 255–280Google Scholar
  26. 26.
    Granger CB, Karimeddini MK, Smith VE, Shapiro HR, Katz AM, Riba AL (1985) Rapid ventricular filling in left ventricular hypertrophy: I. Physiologic hypertrophy. J Am Coll Cardiol 5: 861–862CrossRefGoogle Scholar
  27. 27.
    Hanrath P, Mathey DG, Siegert R, Bleified W (1980) Left ventricular relaxation and filling pattern in different forms of left ventricular hypertrophy: an echocardiographic study. Am J Cardiol 45: 15–23PubMedCrossRefGoogle Scholar
  28. 28.
    Smith VE, Schulman P, Karimeddini MK, White WB, Merran MK, Katz AM (1985) Rapid ventricular filling in left ventricular hypertrophy: II. Pathologic hypertrophy. J Am Coll Cardiol 5: 869–874PubMedCrossRefGoogle Scholar
  29. 29.
    Lorell BH, Paulus WJ, Grossman W, Wynne J, Cohen PF (1982) Modification of abnormal left ventricular diastolic properties by nifedipine in patients with hypertrophic cardiomyopathy. Circulation 65: 499–507PubMedCrossRefGoogle Scholar
  30. 30.
    Alvares RF, Shaver JA, Gamble WH, Goodwin JF (1984) Isovolumic relaxation period in hypertrophic cardiomyopathy. J Am Coll Cardiol 3: 71–81PubMedCrossRefGoogle Scholar
  31. 31.
    Betocchi S, Bonow RO, Bacharach SL, Rosing DR, Maron BJ, Green MV (1986) Isovolumic relaxation period in hypertrophic cardiomyopathy: assessment by radionuclide angiography. J Am Coll Cardiol 7: 74–81PubMedCrossRefGoogle Scholar
  32. 32.
    Gwathmey JK, Morgan JP (1985) Altered calcium handling in experimental pressure-overload hypertrophy in the ferret. Circ Res 57: 836–843PubMedGoogle Scholar
  33. 33.
    Morgan JP, Morgan KG (1984) Calcium and cardiovascular function: intracellular calcium leavels during contraction and relaxation of mammalian cardiac and vascular smooth muscle as detected aequorin. Am J Med 77 (Suppl 5A): 33–46PubMedCrossRefGoogle Scholar
  34. 34.
    Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61: 70–76PubMedGoogle Scholar
  35. 35.
    Alyono D, Anderson RW, Parrish DG, Dai X, Bache RJ (1986) Alterations of myocardial blood flow associated with experimental canine left ventricular hypertrophy secondary to valvular aortic stenosis. Circ Res 58: 47–57PubMedGoogle Scholar
  36. 36.
    Bache RJ, Arentzen CE, Simon AB, Vrobel TR (1984) Abnormalities in myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy: metabolic evidence for myocardial ischemia. Circulation 69: 409–417PubMedCrossRefGoogle Scholar
  37. 37.
    Fifter MA, Bourdillon PD, Lorell BH (1986) Altered left ventricular diastolic properties during pacing-induced angina in patients with aortic stenosis. Circulation 74: 675–683CrossRefGoogle Scholar
  38. 38.
    Diver DJ, Royal HD, Aroesty JM, McKay RG, Ferguson JJ, Warren SE, Lorell BH (1988) Diastolic function in patients with aortic stenosis: influence of left ventricular load reduction. J Am Coll Cardiol 12: 642–648PubMedGoogle Scholar
  39. 39.
    Hess OM, Ritter M, Schneider J, Grimm J, Turina M, Krayenbuehl HP (1984) Diastolic stiffness and myocardial structure in aortic valve disease before and after valve replacement. Circulation 69: 855–865PubMedCrossRefGoogle Scholar
  40. 40.
    Sasayama S, Nonogi H, Miyazaki S, Sakurai T, Kawai C, Eiho S, Kuwahara M (1985) Changes in diastolic properties of the regional myocardium during pacing-induced ischemia in human subjects. J Am Coll Cardiol 5: 599–606PubMedCrossRefGoogle Scholar
  41. 41.
    Theroux P, Ross J Jr, Franklin D, Covell JW, Bloor CM, Sasayama S (1977) Regional myocardial function and dimensions early and late after myocardial infaction in the unanesthetized dog. Circ Res 40: 158–165PubMedGoogle Scholar
  42. 42.
    Janz RF, Waldron RJ (1978) Predicted effect of chronic apical aneurysms on the passive stiffness of the human left venticle. Circ Res 42(2): 255–263PubMedGoogle Scholar
  43. 43.
    Hori M, Yellin EL, Sonnenblick EH (1982) Left ventricular diastolic suction as a mechanism of ventricular filling. Jpn Circ J 46: 124–129PubMedCrossRefGoogle Scholar
  44. 44.
    Yellin EL, Hori M, Yoran C, Sonnenblick EH, Gabbay S, Frater RWM (1986) Left ventricular relaxation in the filling and nonfilling intact canine heart. Am J Physiol 250: H620–H629PubMedGoogle Scholar
  45. 45.
    Nikolic’ S, Yellin EL, Tamura K, Vetter H, Tamura T, Meisner JS, Frater RWM (1988) Passive properties of canine left ventricle: diastolic stiffness and resting forces. Circ Res 62: 1210–1222Google Scholar
  46. 46.
    Zile MR, Blaustein AS, Gaasch WH (1985) In the normal left ventricle catecholamine induced changes in filling rate are mediated through change in end systolic size, (abstract) Circulation 72 (Suppl III): 88Google Scholar
  47. 47.
    Sonnenblick EH (1980) The structural basis and importance of restoring forces and elastic recoil for the filling of the heart. Eur Heart J 1 (Suppl A): 107–110Google Scholar
  48. 48.
    Suga H, Goto Y, Igarashi Y, Yamada O, Nozawa T, Yasumura Y (1986) Ventricular suction under zero source pressure for filling. Am J Physiol 251: H47–H55PubMedGoogle Scholar
  49. 49.
    Alderman EL, Glantz SA (1976) Acute hemodynamic interventions shift the diastolic pressure-volume curve in man. Circulation 54: 662–671PubMedGoogle Scholar
  50. 50.
    Parmley WW, Chuck L, Chatterjee K, Klausner SC, Glantz SA, Ratshin RA (1976) Acute changes in the diastoic pressure-volume relationship of the left ventricle. Eur J Cardiol 4 (Suppl): 105–120PubMedGoogle Scholar
  51. 51.
    Brodie BR, Grossman W, Mann T, McLaurin LP (1977) Effects of sodium nitroprusside on left ventricular diastolic pressure-volume relations. J Clin Invest 59: 59–68PubMedCrossRefGoogle Scholar
  52. 52.
    Ludbrook PA, Byrne JD, Kurnik PB, McKnight RC (1977) Influence of reduction of preload and afterload by nitroglycerin on left ventricular diastoic pressure-volume relations and relaxation in man. Circulation 56: 937–943PubMedGoogle Scholar
  53. 53.
    Shirato K, Shabetai R, Bhargava V, Franklin D, Ross J Jr (1978) Alteration of the left ventricular diastolic pressure-segment length relation produce by the pericardium: effects of cardiac distension and afterload reduction in conscious dogs. Circulation 57: 1191–1198PubMedGoogle Scholar
  54. 54.
    Ross J (1979) Acute displacement of the diastolic pressure-volume curve of the left ventricle: role of the pericardium and the right ventricle. Circulation 59: 32–37 (editorial)Google Scholar
  55. 55.
    Olsen CO, Tyson GS, Maier GW, Spratt JA, Davis JW, Rankin JS (1983) Dynamic ventricular interaction in the conscious dog. Circ Res 52: 85–104PubMedGoogle Scholar
  56. 56.
    Visner MS, Arentzen CE, O’Connor MJ, Larson EV, Anderson RW (1983) Alterations in left ventricular three-dimensional dynamic geometry and systolic function during acute right ventricular hypertension in the conscious dog. Circulation 67: 353–365PubMedCrossRefGoogle Scholar
  57. 57.
    Slinker BK, Glantz SA (1986) End-systolic and end-diastolic ventricular interaction. Am J Physiol 251: H1062–H1075PubMedGoogle Scholar
  58. 58.
    Slinker BK, Chagas ACP, Glantz SA (1987) the importance of direct ventricular interaction decreases in chronic pressure overload hypertrophy in the dog. Am J Physiol 253: H347–H357PubMedGoogle Scholar
  59. 59.
    Tyberg JV, Misbach GA, Parmley WW, Glantz SA (1987) Effects of the pericardium on left ventricular performance. In: Baan J, Arntzenius AC, Yellin EL (eds) Cardiac dynamics, Martinus Nijhoff. The Hague, pp 159–168Google Scholar
  60. 60.
    Glantz SA, Misbach GA, Moores WY, Mathey DG, Lekven J, Stowe DF, Parmley WW, Tyberg JV (1978) The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res 42: 433–441PubMedGoogle Scholar
  61. 61.
    Little WC, Badke FR, O’Rourke RA (1984) Effect of right ventricular pressure on the end-diastolic left ventricular pressure-volume relationship before and after chronic right ventricular pressure overload in dogs without pericardia. Circ Res 54: 719–730PubMedGoogle Scholar
  62. 62.
    Maruyama Y, Ashikawa K, Isoyama S, Kanatsuka H, Ino-Oka E, Takishima T (1982) Mechanical interactions between four heart chambers with and without the pericardium in canine hearts. Circ Res 50: 86–100PubMedGoogle Scholar
  63. 63.
    Spadaro J, Bing OHL, Gassch WH, Laraia P, Franklin A, Weintraub RM (1982) Effects of perfusion pressure on myocardial performance, metabolism wall thickness, and compliance: comprison of the beating and fibrillating heart. J Thorac Cardiovasc Surg 84: 398–405PubMedGoogle Scholar
  64. 64.
    Stokland O, Miller MM, Lekven J, Ilebekk A (1980) The significance of the intact pericardium for cardiac performance in the dog. Circ Res 47: 27–32PubMedGoogle Scholar
  65. 65.
    Janicki JS, Weber KT (1980) the pericardium and ventricular interaction, distensibility, and function. Am J Physiol 238: H494–H503PubMedGoogle Scholar
  66. 66.
    Robotham JL, Mitzner W (1979) A model of the effects of respiration on left ventricular performance. J Appl Physiol 46: 411–418PubMedGoogle Scholar
  67. 67.
    Robotham JL, Rabson J, Permutt S, Bromberger-Barnea B (1979) Left ventricular hemodynamics during respiration. J Appl Physiol 47: 1295–1303PubMedGoogle Scholar
  68. 68.
    Smiseth OS, Refsum H, Tyberg JV (1984) Pericardial pressure assessed by right atrial pressure: a basis for calculation of left ventricular transmural pressure. Am Heart J 108: 603–605PubMedCrossRefGoogle Scholar
  69. 69.
    Tyson GS Jr, Maier GW, Olsen CO, Davis JW, Rankin JS (1984) Pericardial influences on ventricular filling in the conscious dog: an analysis based on pericardial pressure. Circ Res 54: 173–184PubMedGoogle Scholar
  70. 70.
    Freeman GL, LeWinter MM (1984) Pericardial adaptations during chronic cardiac dilation in dogs. Circ Res 54: 294–300PubMedGoogle Scholar
  71. 71.
    LeWinter MM, Pavelec R (1982) Influence of the pericardium on left ventricular end-diastolic pressure-segment relations during early and later stages of experimental chronic volume overload in dogs. Circ Res 50 (4): 501–509PubMedGoogle Scholar
  72. 72.
    Lee JM, Boughner DR (1981) Tissue mechanics of canine pericardium in different test environments. Circ Res 49: 533–544PubMedGoogle Scholar
  73. 73.
    Lee MC, LeWinter MM, Freeman GL, Shabetai R, Fung YC (1985) Biaxial mechanical properties of the pericardium in normal and volume overload dogs. Am J Physiol 249: H22–H230Google Scholar
  74. 74.
    Goldstein JA, Vlahakes GJ, Verrier ED, Shiller NB, Botvinick E, Tyberg JV, Parmley WW, Chatterjee K (1983) Volume loading improves low cardiac output in experimental right ventricular infarction. J Am Coll Cardiol 2: 270–277PubMedCrossRefGoogle Scholar
  75. 75.
    Goldstein JA, Vlahakes GJ, Verrier ED, Shiller NB, Tyberg JV, Ports TA, Parmley WW, Chatterjee K (1982) The role of right ventricular systolic dysfunction and elevated intrapericardial pressure in the genesis of low output in experimental right ventricular infarction. Circulation 65: 513–522PubMedCrossRefGoogle Scholar
  76. 76.
    Fewell JE, Abendschein DR, Murray JF, Rapaport E (1980) Continuous positive-pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog. Circ Res 46: 125–132PubMedGoogle Scholar
  77. 77.
    Fewell JE, Abendschein DR, Carlson CJ, Rapaport E, Murray JF (1980) Mechanism of decreased right and left ventricular end-diastolic volumes during continuous positive-pressure ventilation in dogs. Circ Res 47: 467–472PubMedGoogle Scholar
  78. 78.
    Rankin JS, Arentzen CE, McHale PA, Ling D, Anderson RW (1977) Viscoelastic properties of the diastolic left ventricle in the conscious dog. Circ Res 41: 37–45PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 1989

Authors and Affiliations

  • Stanton A. Glantz
  • John C. Gilbert
    • 1
  1. 1.Cardiovascular Research Institute and Department of MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations