Skip to main content

Coupling Between Ventricluar and Arterial Properties

  • Chapter
Book cover Recent Progress in Failing Heart Syndrome

Summary

The ventricle transfers the mechanical energy of contraction to blood accumulated in the ventricular chamber to provide adequate cardiac output for peripheral perfusion and to generate adequate pressure in the ascending aorta. The ventricle is generally considered matched to a given load if it allows a maximal amount of external work against that load, while the matching between the ventricle and arterial system can also be defined from the principle of economical fuel consumption or mechanical efficiency.

Ventriculo-arterial coupling will deviate from the optimal condition through changes in elastance of either ventricle or artery. Ventricular and arterial properties are substantially modified by aging, arteriosclerosis, and hypertension together with myocardial hypertrophy.

When the ventriculo-arterial coupling is investigated in humans in terms of end-systolic elastance of the ventricle and effective input elastance of the arterial tree, it is normally set toward higher left ventricular work efficiency, whereas in patients with moderate cardiac dysfunction, this coupling is adjusted to maximize stroke work at the expense of the work efficiency. Neither the stroke work nor the work efficiency is near maximum for patients with severe cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piene H, Sund T (1982) Does normal pulmonary impedance constitute the optimum load for the right ventricle? Am J Physiol 242:H154–H160.

    PubMed  CAS  Google Scholar 

  2. Elzinga G, Westerhof N (1973) Pressure and flow generated by the left ventricle against different impedances. Circ Res 32:178–186.

    PubMed  CAS  Google Scholar 

  3. Elzinga G, Piene H, de Jong J (1980) Left and right ventricular pump function and consequences of having two pumps in one heart. A Study on the isolated cat heart. Circ Res 46:564–574.

    CAS  Google Scholar 

  4. van den Horn GJ, Westerhof N, Elzinga G (1985) Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res 56:252–261.

    Google Scholar 

  5. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245: H773–H780.

    PubMed  CAS  Google Scholar 

  6. Sunagawa K, Maughan WL, Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56:586–595.

    PubMed  CAS  Google Scholar 

  7. Asanoi H, Sasayama S, Kameyama T (1989) Ventriculo-arterial coupling in normal and failing heart in humans. Circ Res 65:483–493.

    PubMed  CAS  Google Scholar 

  8. Burkhoff D, Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250:R1021–R1027.

    PubMed  CAS  Google Scholar 

  9. Suga H, Igarashi Y, Yamada O, Goto Y (1985) Mechanical efficiency of the left ventricle as a function of preload, afterload, and contractility. Heart Vessels 1:3–8.

    Article  PubMed  CAS  Google Scholar 

  10. Elzinga G, Westerhof N (1980) Pump function of the feline left heart: changes with heart rate and its bearing on the energy balance. Cardiovasc Res 14:81–92.

    Article  PubMed  CAS  Google Scholar 

  11. Suga H (1979) Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 236:H498–H505.

    PubMed  CAS  Google Scholar 

  12. Suga H, Hayashi T, Shirahata M, Ninomiya I (1980) Critical evaluation of left ventricular systolic pressure volume area as a predictor of oxygen consumption rate. Jpn J Physiol 30:907–919.

    Article  PubMed  CAS  Google Scholar 

  13. Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echo-cardiographic volume determinations: echocardiographic-angiographic correlations in the presence and absence of asynergy. Am J Cardiol 37:7–11.

    Article  PubMed  CAS  Google Scholar 

  14. Harris P (1987) Congestive cardiac failure: central role of the arterial blood pressure. Br Heart J 58:190–203.

    Article  PubMed  CAS  Google Scholar 

  15. Asanoi H, Ishizaka S, Kameyama T, Miyagi K, Nozawa T, Sasayama S (1991) Neural modulation of optimal ventriculo-arterial coupling in conscious dogs. J Am Coll Cardiol 17(Suppl): 374A.

    Article  Google Scholar 

  16. Sasayama S, Ohyagi A, Lee JD, Nonogi H, Sakurai T, Wakabayashi A, Fujita M, Kawai C (1982) Effect of the vasodilator therapy in regurgitant valvular disease. Jpn Circ J 46:433–441.

    Article  PubMed  CAS  Google Scholar 

  17. Kameyama T, Asanoi H, Ishizaka S, Sasayama S (1991) Ventricular load optimization by unloading therapy in patients with heart failure. J Am Coll Cardiol 17: 199–207.

    Article  PubMed  CAS  Google Scholar 

  18. Ishizaka S, Asanoi H, Kameyama T, Sasayama S (1991) Ventricular-load optimization by inotropic stimulation in patients with heart failure. Int J Cardiol 31: 51–58.

    Article  PubMed  CAS  Google Scholar 

  19. Asanoi H, Sasayama S (1989) Relationship of plasma norepinephrine to ventricularload coupling in patients with heart failure. Jpn Circ J 53:131–140.

    Article  PubMed  CAS  Google Scholar 

  20. Sasayama S, Asanoi H (1989) Exercise hemodynamics in patients with heart failure. In: Hori M, Suga H, Baan J, Yellin EL (eds) Cardiac mechanics and function in the normal and diseased heart. Springer, Tokyo, pp 335–342.

    Google Scholar 

  21. Shroff SG, Motz W, Janicki JS, Weber KT (1985) Importance of quantifying left ventricular systolic resistance in hypertrophy due to systemic hypertension. J Am Coll Cardiol 5:487.

    Google Scholar 

  22. Cambell KB, Ringo JA, Neti C, Alexander JE (1984) Informational analysis of left ventricle/systemic arterial interaction. Ann Biomed Eng 12:209–231.

    Article  Google Scholar 

  23. Takahashi M, Sasayama S, Kawai C, Kotoura H (1980) Contractile performance of the hypertrophied ventricle in patients with systemic hypertension. Circulation 62:116–126.

    PubMed  CAS  Google Scholar 

  24. Gunther S, Grossman W (1979) Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation 59:679–688.

    Google Scholar 

  25. Wolinsky H, Glagov S (1964) Structural basis for the static mechanical properties of the aortic media. Circ Res 14:400–413.

    PubMed  CAS  Google Scholar 

  26. Roach MR, Burton AC (1959) The effect of age on the elasticity of human iliac arteries. Can J Biochem Physiol 35:681–690.

    Article  Google Scholar 

  27. Learoyd BM, Taylor MG (1966) Alterations with age in the viscoelastic properties of human arterial walls. Circ Res 18:278–292.

    PubMed  CAS  Google Scholar 

  28. Bader H (1967) Dependence of wall stress in the human thoracic aorta on age and pressure. Circ Res 20:354–361.

    PubMed  CAS  Google Scholar 

  29. Moritake K, Handa H, Okumura A, Hayashi K, Niimi H (1974) Stiffness of cerebral arteries: its role in the pathogenesis of cerebral aneurysms. Neurol Med Chir (Tokyo) 14:47–53.

    Article  Google Scholar 

  30. Hayashi K, Sato M, Handa H, Moritake K (1974) Biomechanical study of the constitutive laws of vascular walls. Exp Mech 14:440–444.

    Article  Google Scholar 

  31. Kawasaki T, Sasayama S, Yagi S, Asakawa T, Hirai T (1987) Non-invasive assessment of the age-related changes in stiffness of major branches of the human arteries. Cardiovasc Res 21:678–687.

    Article  PubMed  CAS  Google Scholar 

  32. Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K (1980) Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech 13: 175–184.

    Article  PubMed  CAS  Google Scholar 

  33. Arndt JO, Stegall HF, Wicke HJ (1971) Mechanics of the aorta in vivo. Circ Res 28:693–704.

    PubMed  CAS  Google Scholar 

  34. Nichols WW, O’Rourke MF, Avolio AP, Yaginuma T, Murgo JP, Pepine CJ, Conti R (1987) Age-related changes in left ventricular/arterial coupling. In: Yin FCP (ed) Ventricular arterial coupling. Springer, New York, pp 79–114.

    Google Scholar 

  35. Berry CL, Greenwald SE, Rivett JF (1975) Static mechanical properties of the developing and mature rat aorta. Cardiovasc Res 9:669–678.

    Article  PubMed  CAS  Google Scholar 

  36. Wolinsky H (1972) Long-term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes. Circ Res 3:301–309.

    Google Scholar 

  37. Nagasawa S, Handa H, Okumura A, Naruo Y, Moritake K, Hayashi K (1979) Mechanical properties of human cerebral arteries. Part 1: effects of age and vas¬cular smooth muscle activation. Surg Neurol 12:297–304.

    PubMed  CAS  Google Scholar 

  38. Yin FCP, Spurgeon HA, Kallman CH (1983) Age-associated alterations in viscoelastic properties of canine aortic strips. Circ Res 53:464–472.

    PubMed  CAS  Google Scholar 

  39. Yagi S, Kawaguchi Y, Nakayama K (1982) Ultrasonic thickness detection system for non-invasive evaluation of local young’s modulus of living arterial wall. Proceedings of the Scientific Session of the Japanese Bio-rheology Society. Tokyo, pp 243–246.

    Google Scholar 

  40. Farrar DJ, Bond MG, Sawyer JK, Green HD (1984) Pulse wave velocity and morphological changes associated with early atherosclerosis progression in the aortas of cynomolgus monkeys. Cardiovasc Res 18:107–118.

    Article  PubMed  CAS  Google Scholar 

  41. Kawasaki T, Yagi S, Hirai T, Sasayama S (1989) Non-invasive measurement of Young’s modulus of human common carotid arteries. J Jpn Coll Angio127:197–205

    Google Scholar 

  42. Nichols WW, O’Rourke MF, Avolio AP, Yaginuma T, Murgo JP, Pepine CJ, Conti CR (1985) Effects of age on ventricular-vascular coupling. Am J Cardiol 55: 1179–1184.

    Article  PubMed  CAS  Google Scholar 

  43. Ross R (1986) The pathogenesis of atherosclerosis - an update. N Engl J Med 314:488–500.

    Article  PubMed  CAS  Google Scholar 

  44. Roberts WC, Ferrans VJ, Levy RI, Fredrickson DS (1973) Cardiovascular pathology in hyperlipoproteinemia: anatomic observations in 42 necropsy patients with normal or abnormal serum lipoprotein patterns. Am J Cardiol 31:557–570.

    Article  PubMed  CAS  Google Scholar 

  45. Sumner DS, Hokanson DE, Strandness DE Jr (1969) Arterial walls before and after endarterectomy. Arch Surg 99:606–611.

    PubMed  CAS  Google Scholar 

  46. Burton AC (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34:619–642.

    PubMed  CAS  Google Scholar 

  47. Hirai T, Sasayama S, Kawasaki T, Yagi S (1989) Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation 80:78–86.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Sasayama, S., Asanoi, H. (1991). Coupling Between Ventricluar and Arterial Properties. In: Sasayama, S., Suga, H. (eds) Recent Progress in Failing Heart Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67955-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67955-4_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68019-2

  • Online ISBN: 978-4-431-67955-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics