Application of RLGS to Screening Endogeneously Imprinted Genes

  • Hideo Shibata
  • Christoph Plass
Part of the Springer Lab Manuals book series (SLM)


Landmark restriction sites on the whole genome can be visualized and screened with the RLGS technique. If recognition sites of methylation-sensitive endonuclease are used for landmark sites, the appearance of RLGS spots depends not only the interspecific polymorphism but on the methylation state of landmark sites. When a landmark site was methylated and resistant to digestion, the corresponding RLGS spot disappeared and vice versa. Therefore the RLGS technique is applicable to scanning the methylation state of landmark sites on the whole genome when using methylation-sensitive endonuclease for landmark sites. We have named this technique restriction landmark genome scanning using methylation-sensitive endonuclease (RLGS-M), and have used it to screen endogenously imprinted loci/genes [1,2], genes expressing with a developmental stage specificity [3], and cell type specificity [4].


Imprint Gene Imprint Locus Restriction Landmark Genomic Scanning Female Male Female Male Imprint Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shibata H, Hirotsune S, Okazaki Y, Komatsubara H, Muramatsu M, Takagi N, Ueda T, Shiroishi T, Moriwaki K, Katsuki M, Chapman VM, Hayashizaki Y (1994) Genetic mapping and systematic screening of mouse endogenously imprinted loci detected with restriction landmark genome scanning method (RLGS). Mammal Genome 5:797–800CrossRefGoogle Scholar
  2. 2.
    Shibata H, Yoshino K, Muramatsu M, Plass C, Chapman VM, Hayshizaki Y (1995) The use of RLGS to scan the mouse genome for endogenous loci with imprinted patterns of methylation. Electrophoresis 16:210–217PubMedCrossRefGoogle Scholar
  3. 3.
    Kawai J, Hirotsune S, Hirose K, Fushiki S, Watanabe S, Hayashizaki Y (1993) Methylation profiles of genomic DNA of mouse developmental brain detected by restriction landmark genomic scanning (RLGS) method. Nucleic Acids Res 21:5604–5608PubMedCrossRefGoogle Scholar
  4. 4.
    Kawai J, Hirose K, Fushiki S, Hirotsune S, Ozawa N, Hara A, Hayashizaki Y, Watanabe S (1994) Comparison of DNA methylation patterns among mouse cell lines by restriction landmark genomic scanning. Mol Cell Biol 4:7421–7427Google Scholar
  5. 5.
    Lindsay S, Bird A (1987) Use of restriction enzymes to detect potetial gene sequences in mammalian DNA. Nature 327:336–338PubMedCrossRefGoogle Scholar
  6. 6.
    Crouse H (1960) The controlling element in sex chromosome behaviour in Sciara. Genetics 45:1429–1443PubMedGoogle Scholar
  7. 7.
    Chandra HS, Brown SW (1975) Chromosome imprinting and the mammalian X chromosome. Nature 253:165–168PubMedCrossRefGoogle Scholar
  8. 8.
    Lyon MF, Rastan S (1984) Parental source of chromosome imprinting and its relevance for X-chromosome inactivation. Differentiation 26:63–67PubMedCrossRefGoogle Scholar
  9. 9.
    Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642PubMedCrossRefGoogle Scholar
  10. 10.
    Surani MAH, Barton SC (1983) Development of gynecogenetic eggs in the mouse: implications for parthenogenic embryo. Science 222:1034–1036PubMedCrossRefGoogle Scholar
  11. 11.
    Surani MAH, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550PubMedCrossRefGoogle Scholar
  12. 12.
    McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genome. Cell 37:179–183PubMedCrossRefGoogle Scholar
  13. 13.
    Beechey CV, Cattanach BM (1996) Genetic imprinting map. Mouse Genome 94:96–99Google Scholar
  14. 14.
    Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type 2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87PubMedCrossRefGoogle Scholar
  15. 15.
    Nicholls RD, Knoll JHM, Butler MG, Karam S, Lalande M (1989) Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342:281–285PubMedCrossRefGoogle Scholar
  16. 16.
    Searle AG, Edwards JH, Hall JG (1994) Mouse homologues of human hereditary disease. J Med Genet 31:1–19PubMedCrossRefGoogle Scholar
  17. 17.
    Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362:747–749PubMedCrossRefGoogle Scholar
  18. 18.
    Ogawa O, Eccle MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumor. Nature 362:749–751PubMedCrossRefGoogle Scholar
  19. 19.
    Sasaki H, Jones PA, Chaillet RJ, Ferguson-Smith AC, Barton SC, Reik W, Surani A (1992) Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II(Igf2) gene. Genes Dev 6:1843–1856PubMedCrossRefGoogle Scholar
  20. 20.
    Stöger R, Kubicka P, Liu C-G, Kafri T, Razin A, Cedar H, Barlow DP (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73:61–71PubMedCrossRefGoogle Scholar
  21. 21.
    Brandeis M, Kafri T, Ariel M, Chaillet JR, McCarrey J, Razin A, Cedar H (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J 12:3669–3677PubMedGoogle Scholar
  22. 22.
    Driscoll DJ, Waters MF, Williams CA, Zori RT, Glenn CC, Avidano KM, Nicholls RD (1992) A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomics 13:917–924PubMedCrossRefGoogle Scholar
  23. 23.
    Shibata H, Yoshino K, Sunahara S, Gondo Y, Katsuki M, Ueda T, Kamiya M, Muramatsu M, Murakami Y, Kalcheva I, Plass C, Chapman VM, Hayashizaki Y (1996) Inactive allele-specific methylation and chromatin structure of the imprinted gene U2af1-rs1 on mouse chromosome 11. Genomics 35:248–252PubMedCrossRefGoogle Scholar
  24. 24.
    Kay GF, Barton SC, Surani MA, Rastan S (1994) Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77:639–650PubMedCrossRefGoogle Scholar
  25. 25.
    Latham KE, Doherty AS, Scott CD, Schultz RM (1994) Igf2r and Igf2 gene expression in androgenetic, gynecogenetic, and parthenogenetic preimplan-tation mouse embryos: absence of regulation by genomic imprinting. Genes Dev 8:290–299PubMedCrossRefGoogle Scholar
  26. 26.
    Szabó PE, Mann JR (1995) Allele-specific expression and total expression levels of imprinted genes during early mouse development: implications for imprinting mechanism. Genes Dev 9:3097–3108PubMedCrossRefGoogle Scholar
  27. 27.
    Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926PubMedCrossRefGoogle Scholar
  28. 28.
    Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365PubMedCrossRefGoogle Scholar
  29. 29.
    Solter D (1988) Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet 22:127–146PubMedCrossRefGoogle Scholar
  30. 30.
    Sasaki H, Hamada T, Ueda T, Seki R, Higashinakagawa T, Sakaki Y (1991) Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting. Development 111:573–581PubMedGoogle Scholar
  31. 31.
    Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90:11995–11999PubMedCrossRefGoogle Scholar
  32. 32.
    Imoto H, Hirotsune S, Muramatsu M, Okuda K, Sugimoto O, Chapman VM, Hayashizaki Y (1994) Direct determination of Not I cleavage sites in the genomic DNA of adult mouse kidney and human trophoblast using whole-range restriction landmark genomic scanning. DNA Res 1:239–243PubMedCrossRefGoogle Scholar
  33. 33.
    Hirotsune S, Shibata H, Okazaki Y, Sugino H, Imoto H, Sasaki N, Hirose K, Okuizumi H, Muramatsu M, Plass C, Chapman VM, Tamatsukuri S, Miyamoto C, Furuichi Y, Hayashizaki Y (1993) Molecular cloning of polymorphic markers on RLGS gel using the spot target cloning method. Biochem Biophys Res Commun 194:1406–1412PubMedCrossRefGoogle Scholar
  34. 34.
    Hayashizaki Y, Shibata H, Hirotsune S, Sugino H, Okazaki Y, Sasaki N, Hirose K, Imoto H, Okuizumi H, Muramatsu M, Komatsubara H, Shiroishi T, Moriwaki K, Katsuki M, Hatano N, Sasaki H, Ueda T, Mise N, Takagi N, Plass C, Chapman VM (1994) Identification and characterization of an imprinted U2af binding protein related sequence on mouse chromosome 11 detected by efficient genomic screening using Restriction Landmark Genomic Scanning (RLGS-M). Nat Genet 6:33–40PubMedCrossRefGoogle Scholar
  35. 35.
    Plass C, Shibata H, Kalcheva I, Mullins L, Kotelevtseva N, Mullins J, Sasaki H, Kato R, Hirotsune S, Okazaki Y, Held WA, Hayashizaki Y, Chapman VM (1996) Nat Genet 14:106–109PubMedCrossRefGoogle Scholar
  36. 36.
    Neumann B, Kubicka P, Barlow DP (1995) Characteristics of imprinted genes. Nat Genet 9:12–13PubMedCrossRefGoogle Scholar
  37. 37.
    Hurst SD, McVean G, Moore T (1996) Imprinted genes have few and small introns. Nat Genet 12:234–237PubMedCrossRefGoogle Scholar
  38. 38.
    Pearsall RS, Shibata H, Brozowska A, Yoshino K, Okuda K, Plass C, Chapman VM, de Jong PJ, Hayashizaki Y, Held WA (1996) Absence of imprinting in U2AFBPL, a human homologue of the imprinted mouse gene U2afbp-rs. Biochem Biophys Res Commun 222:171–177PubMedCrossRefGoogle Scholar
  39. 39.
    Kalcheva I, Plass C, Sait S, Eddy R, Shows T, Watkins CD, Camper S, Shibata H, Hayashizaki Y, Ueda T, Takagi N, Chapman VM (1995) Comparative mapping of the imprinted U2afbpL gene on mouse chromosome 11 and human chromosome 5. Cytogenet Cell Genet 68:19–24PubMedCrossRefGoogle Scholar
  40. 40.
    Kaneko-Ishino T, Kuroiwa Y, Miyoshi N, Kohda T, Suzuki R, Yokoyama M, Viville S, Barton SC, Ishino F, Surani MA (1995) Peg1/Mest imprinted gene on chromosome 6 identified by cDNA sutraction hybridization. Nat Genet 11:25–29CrossRefGoogle Scholar
  41. 41.
    Leff SE, Brannan CI, Reed ML, Üzçerik T, Francke U, Copeland NG, Jenkins NA (1992) Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nat Genet 2:259–264PubMedCrossRefGoogle Scholar
  42. 42.
    Buiting K, Dittrich B, Gross S, Greger V, Lalande M, Robinson W, Mutirangura A, Ledbetter D, Horsthemke B (1993) Molecular definition of the Prader-Willi syndrome chromosome region and orientation of the SNRPN gene. Hum Mol Genet 2:1991–1994PubMedCrossRefGoogle Scholar
  43. 43.
    Wevrick R, Kerns JA, Francke U (1994) Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum Mol Genet 3:1877–1882PubMedCrossRefGoogle Scholar
  44. 44.
    Sutcliffe JS, Nakao M, Christian S, Örstavik KH, Tommerup N, Ledbetter DH, Beaudet AL (1994) Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet 8:52–58PubMedCrossRefGoogle Scholar
  45. 45.
    Giddings SJ, King CD, Harman KW, Flood JF, Carnaghi LR (1994) Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat Genet 6:310–313PubMedCrossRefGoogle Scholar
  46. 46.
    Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Tycko B (1992) Monoallelic expression of the human H19 gene. Nat Genet 1:40–44PubMedCrossRefGoogle Scholar
  48. 48.
    DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859PubMedCrossRefGoogle Scholar
  49. 49.
    Ohlsson R, Nyström A, Pheifer-Ohlsson S, Töhönen V, Hedborg F, Schofield P, Flam F, Ekström TJ (1993) IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet 4:94–97PubMedCrossRefGoogle Scholar
  50. 50.
    Guillemot F, Caspary T, Tilghman SM, Copeland NG, Gilbert DJ, Jenkins N, Anderson DJ, Joyner AL, Rossant J, Nagy J (1995) Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet 9:235–248PubMedCrossRefGoogle Scholar
  51. 51.
    Hatada I, Mukai T (1995) Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor in mouse. Nat Genet 11:204–206PubMedCrossRefGoogle Scholar
  52. 52.
    Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers H-H (1993) The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet 5:74–78PubMedCrossRefGoogle Scholar
  53. 53.
    Villar AJ, Pedersen RA (1994) Parental imprinting of the Mas protooncogene in mouse. Nat Genet 8:373–379PubMedCrossRefGoogle Scholar
  54. 54.
    Norris DP, Patel D, Kay GF, Penny GD, Brockdorff N, Sheardown S, Rastan S (1994) Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77:41–51PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1997

Authors and Affiliations

  • Hideo Shibata
  • Christoph Plass

There are no affiliations available

Personalised recommendations