Skip to main content

Concept of Genome Scanning

  • Chapter

Part of the book series: Springer Lab Manuals ((SLM))

Abstract

Genome scanning is defined as the high-speed survey of the presence or absence of landmarks throughout a genome and the measurement of their copy number in each locus. Originally, the concept of genome scanning arose from the idea of overall detection of the physical condition of whole genomic DNA. From this standpoint, it would be simplest to detect all fragments of genomic DNA generated by restriction-enzyme cleavage after electrophoresis and staining with ethidium bromide. Initially, efforts were made to visualize whole genomic DNA fragments according to this approach using the E. coli genome [1]. However, this approach has been limited to small-sized genomes (Fig. 1.1). As the complexity of the genome increases, the copy number of DNA molecules of the haploid genome equivalent decreases in proportion to the amount of genomic DNA. In the case of the human genome, which is 3 × 109bp (approximately 103-fold of E. coli genome), a single copy locus per haploid genome of 1 μg human genomic DNA produces only 0.5 attomol (5 × l0-19mol) fragments. Also, as the genome complexity increases, it becomes more difficult to separate and detect the large number of DNA fragments produced from the large-sized genome of higher organisms. Generally, to achieve the high resolution needed for DNA separation of such large genomes, the total amount of genomic DNA is technically limited, with separation steps of DNA fragments such as electrophoretic techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher SG, Lerman LS (1979) Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16:191–200

    Article  Google Scholar 

  2. Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806–812

    Article  PubMed  CAS  Google Scholar 

  3. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    Article  PubMed  CAS  Google Scholar 

  4. Ioannou PA, Amemiya CT, Games J, Kroisel PM, Shibya H, Chen C, Batzer MA, Jong PJ (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet 6:84–89

    Article  PubMed  CAS  Google Scholar 

  5. Cohen D, Chumakov I, Weissenbach J (1993) A first-generation physical map of the human genome. Nature 366:698–701

    Article  PubMed  CAS  Google Scholar 

  6. Collins FS (1995) Positional cloning moves from perditional to traditional. Nat Genet 9:347–350

    Article  PubMed  CAS  Google Scholar 

  7. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  8. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  PubMed  CAS  Google Scholar 

  9. Uitterlinden AG, Slagboom PE, Knook DL, Vijg J (1989) Two dimensional DNA fingerprinting of human individuals. Proc Natl Acad Sci USA 86:2742–2746

    Article  PubMed  CAS  Google Scholar 

  10. Brilliant MH, Gondo Y, Eicher EM (1991) Direct molecular identification of the mouse pink-eyed unstable mutation by genome scanning. Science 252:566–569

    Article  PubMed  CAS  Google Scholar 

  11. Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Slis R, Webster TD, Ledbetter DH, Caskey CT (1989) Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci USA 86:6686–6690

    Article  PubMed  CAS  Google Scholar 

  12. Dietrich W, Katz H, Lincoln SE, Shin H-S, Friedman J, Dracopoli NC, Lander ES (1992) A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131:423–447

    PubMed  CAS  Google Scholar 

  13. Hayashizaki Y, Hirotsune S, Okazaki Y, Muramatsu M, Asakawa J (1994) Fundamentals and applications: restriction landmark genomic scanning (RLGS). In: Meyers RA (ed) The encyclopedia of molecular biology. VCH, Weinheim, pp 813–817

    Google Scholar 

  14. Hatade I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai TA (1991) Genomic scanning method of higher organisms using restriction sites as landmarks. Proc Natl Acad Sci USA 88:9523–9527

    Article  Google Scholar 

  15. Hayashizaki Y, Hirotsune S, Okazaki Y, Hatada I, Shibata H, Kawai J, Hirose K, Watanabe S, Fushiki S, Wada S, Sugimoto T, Kobayakawa K, Kawara T, Sibuya T, Mukai T (1993) Restriction landmark genomic scanning method and its various applications. Electrophoresis 14:251–258

    Article  PubMed  CAS  Google Scholar 

  16. Okazaki Y, Okuizumi S, Sasaki N, Ohsumi T, Kuromitsu J, Kataoka H, Muramatsu M, Iwadate A, Hirota N, Kitajima M, Plass C, Chapman VM, Hayashizaki Y (1994) A genetic linkage map of the mouse using an expanded production system of restriction landmark genomic scanning (RLGS Ver.1.8). Biochem Biophys Res Commun 205:1922–1929

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki H, Yaoi T, Kawai J, Hara A, Kuwajima G, Watanabe S (1996) Restriction landmark cDNA scanning (RLCS): a novel cDNA display system using two-dimensional gel electrophoresis. Nucleic Acids Res 24:289–294

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Japan

About this chapter

Cite this chapter

Hayashizaki, Y. (1997). Concept of Genome Scanning. In: Hayashizaki, Y., Watanabe, S. (eds) Restriction Landmark Genomic Scanning (RLGS). Springer Lab Manuals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67953-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67953-0_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68521-0

  • Online ISBN: 978-4-431-67953-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics