Advertisement

Cell Culture Studies of Oxygen, Nitric Oxide, and Retinal Pericytes’ Contractile Tone

  • Ivan O. Haefliger
  • Douglas R. Anderson

Abstract

Although the pathophysiology of glaucoma is still a matter of debate, it is clear that several conditions represent risk factors for this optic nerve head neuropathy (Shields 1992). Classically, the damage found with glaucoma has been linked to high introcular pressure (IOP) (Anderson 1989). In support of this linkage is that subjects develop unilateral glaucoma after a unilateral posttraumatic increase of IOP. In these patients it is only the eye with a high IOP that has glaucomatous damage, not the eye with normal pressure. Furthermore, the progression of damage can be stopped by reducing the IOP to normal values, which demonstrates that the high IOP, rather than the trauma itself, can lead to glaucoma (Anderson 1989; Shields 1992; Haefliger and Flammer 1997a). The importance of the role of IOP in glaucoma has been further supported by experimental animal models, in which glaucomatous cupping could be elicited after several months of an artificial increase in IOP (Shields 1992). These examples, as well as the common observation that most patients with primary open-angle glaucoma also have some elevation of IOP, have led us to assume that glaucoma was due only to an increase of the IOP and, by definition, that glaucoma is intolerably high IOP.

Keywords

Nitric Oxide Methylene Blue Atrial Natriuretic Peptide Sodium Nitroprusside Optic Nerve Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson DR (1970) Vascular supply to the optic nerve of primates. Am J Ophthalmol 60:341–351Google Scholar
  2. Anderson DR (1989) The damage caused by pressure. Am J Ophthalmol 108:485–495PubMedGoogle Scholar
  3. Anderson DR (1996) Glaucoma, capillaries and pericytes. 1. Blood flow regulation. Ophthalmologica 210:257–262PubMedCrossRefGoogle Scholar
  4. Anderson DR, Braverman S (1976) Reevaluation of the optic disc vasculature. Am J Ophthalmol 82:165–174PubMedGoogle Scholar
  5. Anderson DR, Davis EB (1996) Glaucoma, capillaries, and pericytes. 2. Identification and characterization of retinal pericytes in culture. Ophthalmologica 210:263–268PubMedCrossRefGoogle Scholar
  6. Anderson DR, Quigley HA (1992) The optic nerve. In: Hart WM Jr (ed) Alder’s physiology of the eye. 9th ed. Mosby-Year Book, St. Louis, pp 616–640Google Scholar
  7. Aotaki-Keen AE, Harvey AK, de Juan E, Hjelmand LM (1991) Primary culture of human retinal glia. Invest Ophthalmol Vis Sci 32:1733–1738PubMedGoogle Scholar
  8. Béchetoille A, Bresson-Dumont H (1994) Diurnal and nocturnal blood pressure drops in patients with local ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol 232:675–679PubMedCrossRefGoogle Scholar
  9. Benedito S, Prieto D, Nielsen PJ, Nyborg NCB (1991a) Role of the endothelium in acetyl-choline-induced relaxation and spontaneous tone of bovine isolated retinal small arteries. Exp Eye Res 52:575–579PubMedCrossRefGoogle Scholar
  10. Benedito S, Prieto D, Nielsen PJ, Nyborg NCB (1991b) Histamine induces endothe-lium-dependent relaxation of bovine retinal arteries. Invest Ophthalmol Vis Sci 32:32–38PubMedGoogle Scholar
  11. Bill A, Sperber GO (1990) Control or retinal and choroidal blood flow. Eye 4:319–325PubMedCrossRefGoogle Scholar
  12. Chakravarthy U, Gardiner TA, Anderson P, Archer DB, Trimble ER (1992) The effect of endothelin-1 on the retinal microvascular pericyte. Microvasc Res 43:241–254PubMedCrossRefGoogle Scholar
  13. Chan LS, Li W, Khatami M, Rockey JH (1986) Actin in cultured bovine retinal capillary pericytes: morphological and functional correlation. Exp Eye Res 43:41–54PubMedCrossRefGoogle Scholar
  14. D’Amore PA (1990) Culture and study of pericytes. In: Piepr HM (ed) Cell culture techniques in cardiovascular research. Springer, Heidelberg, pp 299–314Google Scholar
  15. Das A, Frank RN, Weber ML, Kennedy A, Reidy CA, Mancini MA (1988) ATP causes retinal pericytes to contract in vitro. Exp Eye Res 46:349–362PubMedCrossRefGoogle Scholar
  16. Demailly P, Cambien F, Plouin F, Baron P, Chevallier B (1984) Do patients with low-tension glaucoma have particular cardiovascular characteristics? Ophthalmologica 188:65–75PubMedCrossRefGoogle Scholar
  17. De Venes J, Bol JG, Hudson L, Schipper J, Steinbusch HW (1988) Atrial natriuretic factor-responding and cyclic guanosine monophosphate and (cGMP)-producing cells in the rat hippocampus: a combined micropharmacological and immunocytochemical approach. Brain Res 446:387–395CrossRefGoogle Scholar
  18. Dodge AB, Hechtman HB, Shepro D (1991) Microvascular endothelial-derived autacoids regulate pericyte contractility. Cell Motil Cytoskeleton 18:180–188PubMedCrossRefGoogle Scholar
  19. Donati G, Pournaras CJ, Munoz JL, Poitry S, Poitry-Yamate CL, Tsacopoulos M (1995) Nitric oxide controls arteriolar tone in the retina of the miniature pig. Invest Ophthalmol Vis Sci 36:2228–2237PubMedGoogle Scholar
  20. Fethiere J, Meloche S, Nguyen TT, Ong H, De Lean A (1989) Distinct properties of atrial natriuretic factor receptor subpopulations in epithelial and fibroblast cell line. Mol Pharmacol 35:584–592PubMedGoogle Scholar
  21. Ferrari-Dileo G, Davis EB, Anderson DR (1992) Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture. Invest Ophthalmol Vis Sci 33:42–47PubMedGoogle Scholar
  22. Flammer J (1993) Therapeutical aspects of normal-tension glaucoma. Curr Opin Ophthalmol 4:58–64CrossRefGoogle Scholar
  23. Flammer J (1996) To what extent are vascular factors involved in the pathogenesis of glaucoma? In: Kaiser HJ, Flammer J, Hendrickson P (eds) Ocular blood flow. Karger, Basel, pp 12–39Google Scholar
  24. Flammer J, Gasser P, Prünte Ch, Yao K (1992) The probable involvement of factors other than ocular pressure in the pathogenesis of glaucoma. In: Drance SM, Buskirk Van EM, Neufeld AH (eds) Pharmacology of glaucoma. Williams & Wilkins, Baltimore, pp 273–283Google Scholar
  25. Frank RN, Dutta S, Mancini MA (1987) Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci 28:1086–1091PubMedGoogle Scholar
  26. Frank RN, Turczyn TJ, Das A (1990) Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci 31:999–1007PubMedGoogle Scholar
  27. Gasser P, Flammer J (1990) Short-and long-term effect of nifedipine on the visual field of patients with presumed vasospasm. J Int Med Res 18:334–339PubMedGoogle Scholar
  28. Gasser P, Flammer J (1991) Blood-cell velocity in the nailfold capillaries of patients with normal-tension or high-tension glaucoma and of healthy controls. Am J Ophthalmol 111:585–588PubMedGoogle Scholar
  29. Geijer A, Bill A (1979) Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 18:1030–1042PubMedGoogle Scholar
  30. Graham SL, Drance SM, Wijsman K, Douglas GR, Mikelberg S (1995) Ambulatory blood-pressure monitoring in glaucoma. Ophthalmology 102:61–69PubMedGoogle Scholar
  31. Grunwald JE, Riva CE, Stone RA, Keates EU, Petrig BL (1984) Retinal autoregulation in open-angle glaucoma. Ophthalmology 91:1690–1694PubMedGoogle Scholar
  32. Guthauser U, Flammer J, Mahler F (1988) The relationship between digital and ocular vasospasm. Graefes Arch Clin Exp Ophthalmol 226:224–226PubMedCrossRefGoogle Scholar
  33. Guyton AC (1991) Overview of the circulation, and medical physics of pressure, flow, and resistance. In: Guyton AC (ed) Textbook of medical physiology. 8th ed. Saunders, Philadelphia, pp 150–157Google Scholar
  34. Haefliger IO (1995) Regulation des Blutflusses in der Papille Search Glaucoma 3:80–85Google Scholar
  35. Haefliger IO, Anderson DR (1996a) Blood flow regulation in the optic nerve head. In: Ritch R, Shields MB, Krupin T (eds) The glaucomas. 2nd ed. Mosby-Year Book, St. Louis, pp 189–197Google Scholar
  36. Haefliger IO, Anderson DR (1996b) Pericytes and capillary blood flow modulation. In: Kaiser HJ, Flammer J, Hendrickson Ph (eds) Ocular blood flow. Karger, Basel, pp 74–78Google Scholar
  37. Haefliger IO, Anderson DR (1997a) Effect of oxygen on relaxation of retinal pericytes by sodium nitroprusside. Graefes Arch Clin Exp Ophthalmol 235:388–392PubMedCrossRefGoogle Scholar
  38. Haefliger IO, Anderson DR (1997b) Oxygen modulation of guanylate cyclase-mediated retinal pericyte relaxations to SIN-1 and ANP. Invest Ophthalmol Vis Sci 38:1563–1568PubMedGoogle Scholar
  39. Haefliger IO, Flammer J (1997a) The logic of the prevention of glaucomatous damage progression. Curr Opin Ophthalmol 8:35–36CrossRefGoogle Scholar
  40. Haefliger IO, Flammer J (1997b) Le syndrome vasospastique un facteur de risque associé au glaucome. In: Béchetoille A (ed) Glaucomes. 2nd éd. Jappernard, Nantes (273–275)Google Scholar
  41. Haefliger IO, Flammer J, Lüscher TF (1992) Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci 33:2340–2343PubMedGoogle Scholar
  42. Haefliger IO, Flammer J, Lüscher TF (1993a) Endothelium-derived factors as local modulators of the vascular tone: implications in the ophthalmic and cerebral circulation. In: Lehmenkühler A, Grotemeyer K-H, Tegtmeier D (eds) Migraine: basic mechanisms and treatment. Urban & Schwarzenberg, Munich, pp 185–202Google Scholar
  43. Haefliger IO, Flammer J, Lüscher TF (1993b) Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci 34:1722–1730PubMedGoogle Scholar
  44. Haefliger IO, Meyer P, Flammer J, Lüscher TF (1994a) The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology. Surv Ophthalmol 39:123–132PubMedCrossRefGoogle Scholar
  45. Haefliger IO, Zschauer A, Anderson DR (1994b) Relaxation of retinal pericytes contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci 35:991–997PubMedGoogle Scholar
  46. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179PubMedCrossRefGoogle Scholar
  47. Hayreh SS, Zimmerman BM, Podhajsky P, Alward WLM (1994) Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 117:603–624PubMedGoogle Scholar
  48. Helbig H, Kornacker S, Berweck S, Stahl F, Lepple-Wienhues A, Wiederholt M (1992) Membrane potentials in retinal capillary pericytes: excitability and effect of vasoactive substances. Invest Ophthalmol Vis Sci 33:2105–2112PubMedGoogle Scholar
  49. Henrich WL, McAllister EA, Smith PB, Campbell WB (1988) Guanosine 3′,5′-cyclic monophosphate as a mediator of inhibition of renin release. Am J Physiol 255:F474–F478PubMedGoogle Scholar
  50. Hoste AM, Andries LJ (1991) Contractile responses of isolated bovine retinal microar-teries to acetylcholine. Invest Ophthalmol Vis Sci 32:1996–200PubMedGoogle Scholar
  51. Ignarro LJ, Wood KS, Harbison RG, Kadowitz PJ (1986) Atriopeptin II relaxes and elevates cGMP in bovine pulmonary artery but not vein. J Appl Physiol 60:1128–1133PubMedGoogle Scholar
  52. Joyce NC, DeCamilli P, Boyles J (1984) Pericytes, like vascular smooth muscle, contain high levels of cyclic GMP-dependent protein kinase. Microvasc Res 28:206–219PubMedCrossRefGoogle Scholar
  53. Joyce NC, Haire MF, Palade GE (1985a) Contractile proteins in pericytes. I. Immunoper-oxidase localization of tropomyosin. J Cell Biol 100:1379–1386PubMedCrossRefGoogle Scholar
  54. Joyce NC, Haire MF, Palade GE (1985b) Contractile proteins in pericytes. II. Immuno-cytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol 100:1387–1395PubMedCrossRefGoogle Scholar
  55. Kaiser HJ, Flammer J (1991) Systemic hypotension: a risk factor for glaucomatous damage. Ophthalmologica 203:105–108PubMedCrossRefGoogle Scholar
  56. Kaiser HJ, Flammer J, Graf T, Stümpfig D (1993) Systemic blood pressure in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 231:677–680PubMedCrossRefGoogle Scholar
  57. Kanellopoulos AJ, Erickson KA, Netland PA (1996) Systemic calcium channel blockers and glaucoma. J Glaucoma 5:357–362PubMedCrossRefGoogle Scholar
  58. Kelley C, D’Amore P, Hechtman HB, Shepro D (1987) Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J Cell Biol 104:483–490PubMedCrossRefGoogle Scholar
  59. Kelley C, D’Amore P, Hechtman HB, Shepro D (1988) Vasoactive hormones and cAMP affect pericyte contraction and stress fibers in vitro. J Muscle Res Cell Motil 9:184–194PubMedCrossRefGoogle Scholar
  60. Kitazawa J, Shirai H, Go FJ (1989) The effect of calcium antagonist on visual field in low-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 227:408–412PubMedCrossRefGoogle Scholar
  61. Kurz A, Della Bruna R, Pfeilschifter J, Taugner R, Bauer C (1986) Atrial natriuretic peptide inhibits renin release from juxtaglomerular cells by a cGMP-mediated process. Proc Natl Acad Sci USA 83:4769–4773CrossRefGoogle Scholar
  62. Kuwabara T, Cogan DG (1963) Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69:492–502PubMedGoogle Scholar
  63. Lee T-S, Hu K-Q, Chao T, King GL (1989) Characterization of endothelin receptors and effects of endothelin on diacylglycerol and protein kinase C in retinal capillary pericytes. Diabetes 38:1643–1646PubMedCrossRefGoogle Scholar
  64. Leitman DC, Andresen JW, Catalano RM, Waldman SA, Tuan JJ, Murad F (1988) Atrial natriuretic peptide binding, cross-linking, and stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity in cultured cells. J Biol Chem 263:4720–4728Google Scholar
  65. Lipowsky HH, Kolvalcheck S, Zweifach BW (1978) The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res 43: 738–749PubMedGoogle Scholar
  66. McLaren MJ, Inana G, Li CY (1993) Double fluorescent vital assay of phagocytosis by cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 34:317–326PubMedGoogle Scholar
  67. Nayak RC, Berman AB, George KL, Eisenbarth GS, King GL (1988) A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. J Exp Med 167:1003–1015PubMedCrossRefGoogle Scholar
  68. Ohhashi T, Watanabe N, Kawai Y (1990) Effect of atrial natriuretic peptide on isolated bovine mesenteric lymph vessels. Am J Physiol 259:H42–47PubMedGoogle Scholar
  69. Petrig B, Werner EB, Riva CE, Grunwald J (1985) Response of macular capillary blood flow to changes in intraocular pressure as measured by blue field stimulation technique. Doc Ophthalmol Proc Ser 42:447–451 (Sixth International Visual Field Symposium)Google Scholar
  70. Pillunat LE (1998) Vasoactive stimuli and visual field stimulation. In: Haefliger IO, Flammer J (eds) NO and endothelin in the pathogenesis of glaucoma. Lippincott-Raven, New York, pp 89–101Google Scholar
  71. Pillunat LE, Stodtmeister R, Wilmanns I, Christ T (1985) Autoregulation of ocular blood flow during changes in intraocular pressure: preliminary results. Graefes Clin Exp Ophthalmol 223:219–223CrossRefGoogle Scholar
  72. Pillunat LE, Stodtmeister R, Wilmanns I (1987) Pressure compliance of the optic nerve head in low tension glaucoma. Br J Ophthalmol 71:181–187PubMedCrossRefGoogle Scholar
  73. Pillunat LE, Lang GK, Harris A (1994) The visual response to increased ocular blood flow in normal pressure glaucoma. Surv Ophthalmol 38(Suppl):S139–S148PubMedCrossRefGoogle Scholar
  74. Pillunat LE, Anderson DR, Knighton RW, Joos KM, Feuer WJ (1997) Autoregulation in human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 64:737–744PubMedCrossRefGoogle Scholar
  75. Pournaras CJ (1996) Autoregulation of ocular blood flow. In: Kaiser HJ, Flammer J, Hendrickson Ph (eds) Ocular blood flow. Karger, Basel, pp 40–50Google Scholar
  76. Rapoport RM, Waldman SA, Schwarta K, Winquist RJ, Murad F (1985) Effect of atrial natriuretic factor, sodium nitroprusside, and acetylcholine on cGMP levels and relaxation in rat aorta. Eur J Pharmacol 115:219–229PubMedCrossRefGoogle Scholar
  77. Riva CE, Grunwald JE, Sinclair SH (1983) Laser Doppler velocimetry of the effect of pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 24:47–51PubMedGoogle Scholar
  78. Riva CE, Grunwald JE, Petrig BL (1986) Autoregulation of human retinal blood flow: an investigation with laser Doppler velocimetry. Invest Ophthalmol Vis Sci 27:1706–1712PubMedGoogle Scholar
  79. Robert Y, Steiner D, Hendrickson P (1989) Papillary circulation dynamics in glaucoma. Graefes Arch Clin Exp Ophthalmol 227:436–439PubMedCrossRefGoogle Scholar
  80. Robinson R, Riva CE, Grunwald JE, Petrig BL, Sinclair SH (1986) Retinal blood flow autoregulation to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 27:722–726PubMedGoogle Scholar
  81. Shields MB (1992) Textbook of glaucoma. 3rd ed. Williams & Wilkins, Baltimore, pp 431–629Google Scholar
  82. Shigematsu Y, Vaughn J, Touchard CL, Frohlich ED, Alam J, Cole FE (1993) Different ATP effects on natriuretic peptide receptor subtypes in LLC-PK1 and NIH-3T3 cells. Life Sci 53:865–874PubMedCrossRefGoogle Scholar
  83. Sinclair SH, Grunwald JE, Riva CE, Braunstein SN, Nichols CW, Schwarz SS (1982) Retinal vascular autoregulation in diabetes mellitus. Ophthalmology 89: 748–750PubMedGoogle Scholar
  84. Sossi N, Anderson DR (1983) Effect of elevated intraocular pressure on blood flow: occurrence in cat optic nerve head studied with iodoantipyrine 1–125. Arch Ophthalmol 101:98–101PubMedGoogle Scholar
  85. Spaeth GL (1996) Proper outcome measurements regarding glaucoma: the inadequacy of using intraocular pressure alone. Eur J Ophthalmol 6:101–105PubMedGoogle Scholar
  86. Tamaoki J, Kobayashi K, Sakai N, Kanemura T, Horii S, Isono K, Takeuchi S, Chiyotani A, Yamawaki I, Takizawa T (1991) Atrial natriuretic factor inhibits ciliary motility in cultured rabbit tracheal epithelium. Am J Physiol 260:C201–C205PubMedGoogle Scholar
  87. Tilton RG, Kilo C, Williamson JR, Murch DW (1979) Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvasc Res 18: 336–352PubMedCrossRefGoogle Scholar
  88. Toussaint D, Kuwabara T, Cogan DG (1961) Retinal vascular patterns. II. Human retinal vessels studied in three dimensions. Arch Ophthalmol 65:575–581PubMedGoogle Scholar
  89. Ulrich WD, Ulrich C, Bohne BD (1986) Deficient autoregulation and lengthening of the diffusion distance in the anterior optic nerve circulation in glaucoma: an electro-encephalo-dynamographic investigation. Ophthalmol Res 18:253–259CrossRefGoogle Scholar
  90. Voyata J, Via D, Butterfield C, Zetter B (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoproteins. J Cell Biol 99:2034–2040CrossRefGoogle Scholar
  91. Wallow IH, Bindley CD, Reboussin DM, Gange SJ, Fisher MR (1993) Systemic hypertension produces pericyte changes in retinal capillaries. Invest Ophthalmol Vis Sci 34:420–430PubMedGoogle Scholar
  92. Weinstein JM, Funsch D, Page RB, Brennan RW (1982) Optic nerve blood flow and its regulation. Invest Ophthalmol Vis Sci 23:640–645PubMedGoogle Scholar
  93. Weinstein JM, Duckrow RB, Beard D, Brennan RW (1983) Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 24:1559–1565PubMedGoogle Scholar
  94. Wink DA, Beckman JS, Ford PC (1996) Kinetics of nitric oxide reaction in liquid and gas phase. In: Freelish M, Stamler S (eds) Methods in nitric oxide research. Wiley, Chichester, pp 29–37Google Scholar
  95. Zweifach BW, Lipowsky HH (1984) Pressure-flow relations in blood and lymph microcirculation. In: Handbook of physiology. Sect 2: The cardiovascular system, Vol IV: Microcirculation. American Physiological Society, Bethesda, pp: 251–307Google Scholar

Copyright information

© Springer-Verlag Tokyo 2000

Authors and Affiliations

  • Ivan O. Haefliger
    • 1
  • Douglas R. Anderson
    • 2
  1. 1.Laboratory of Ocular Pharmacology and PhysiologyUniversity Eye Clinic BaselBaselSwitzerland
  2. 2.Department of Ophthalmology, Bascom Palmer Eye InstituteUniversity of Miami School of MedicineMiamiUSA

Personalised recommendations