Skip to main content

Cell Culture Studies of Oxygen, Nitric Oxide, and Retinal Pericytes’ Contractile Tone

  • Chapter
Book cover Nitric Oxide in the Eye

Abstract

Although the pathophysiology of glaucoma is still a matter of debate, it is clear that several conditions represent risk factors for this optic nerve head neuropathy (Shields 1992). Classically, the damage found with glaucoma has been linked to high introcular pressure (IOP) (Anderson 1989). In support of this linkage is that subjects develop unilateral glaucoma after a unilateral posttraumatic increase of IOP. In these patients it is only the eye with a high IOP that has glaucomatous damage, not the eye with normal pressure. Furthermore, the progression of damage can be stopped by reducing the IOP to normal values, which demonstrates that the high IOP, rather than the trauma itself, can lead to glaucoma (Anderson 1989; Shields 1992; Haefliger and Flammer 1997a). The importance of the role of IOP in glaucoma has been further supported by experimental animal models, in which glaucomatous cupping could be elicited after several months of an artificial increase in IOP (Shields 1992). These examples, as well as the common observation that most patients with primary open-angle glaucoma also have some elevation of IOP, have led us to assume that glaucoma was due only to an increase of the IOP and, by definition, that glaucoma is intolerably high IOP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DR (1970) Vascular supply to the optic nerve of primates. Am J Ophthalmol 60:341–351

    Google Scholar 

  • Anderson DR (1989) The damage caused by pressure. Am J Ophthalmol 108:485–495

    PubMed  CAS  Google Scholar 

  • Anderson DR (1996) Glaucoma, capillaries and pericytes. 1. Blood flow regulation. Ophthalmologica 210:257–262

    Article  PubMed  CAS  Google Scholar 

  • Anderson DR, Braverman S (1976) Reevaluation of the optic disc vasculature. Am J Ophthalmol 82:165–174

    PubMed  CAS  Google Scholar 

  • Anderson DR, Davis EB (1996) Glaucoma, capillaries, and pericytes. 2. Identification and characterization of retinal pericytes in culture. Ophthalmologica 210:263–268

    Article  PubMed  CAS  Google Scholar 

  • Anderson DR, Quigley HA (1992) The optic nerve. In: Hart WM Jr (ed) Alder’s physiology of the eye. 9th ed. Mosby-Year Book, St. Louis, pp 616–640

    Google Scholar 

  • Aotaki-Keen AE, Harvey AK, de Juan E, Hjelmand LM (1991) Primary culture of human retinal glia. Invest Ophthalmol Vis Sci 32:1733–1738

    PubMed  CAS  Google Scholar 

  • Béchetoille A, Bresson-Dumont H (1994) Diurnal and nocturnal blood pressure drops in patients with local ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol 232:675–679

    Article  PubMed  Google Scholar 

  • Benedito S, Prieto D, Nielsen PJ, Nyborg NCB (1991a) Role of the endothelium in acetyl-choline-induced relaxation and spontaneous tone of bovine isolated retinal small arteries. Exp Eye Res 52:575–579

    Article  PubMed  CAS  Google Scholar 

  • Benedito S, Prieto D, Nielsen PJ, Nyborg NCB (1991b) Histamine induces endothe-lium-dependent relaxation of bovine retinal arteries. Invest Ophthalmol Vis Sci 32:32–38

    PubMed  CAS  Google Scholar 

  • Bill A, Sperber GO (1990) Control or retinal and choroidal blood flow. Eye 4:319–325

    Article  PubMed  Google Scholar 

  • Chakravarthy U, Gardiner TA, Anderson P, Archer DB, Trimble ER (1992) The effect of endothelin-1 on the retinal microvascular pericyte. Microvasc Res 43:241–254

    Article  PubMed  CAS  Google Scholar 

  • Chan LS, Li W, Khatami M, Rockey JH (1986) Actin in cultured bovine retinal capillary pericytes: morphological and functional correlation. Exp Eye Res 43:41–54

    Article  PubMed  CAS  Google Scholar 

  • D’Amore PA (1990) Culture and study of pericytes. In: Piepr HM (ed) Cell culture techniques in cardiovascular research. Springer, Heidelberg, pp 299–314

    Google Scholar 

  • Das A, Frank RN, Weber ML, Kennedy A, Reidy CA, Mancini MA (1988) ATP causes retinal pericytes to contract in vitro. Exp Eye Res 46:349–362

    Article  PubMed  CAS  Google Scholar 

  • Demailly P, Cambien F, Plouin F, Baron P, Chevallier B (1984) Do patients with low-tension glaucoma have particular cardiovascular characteristics? Ophthalmologica 188:65–75

    Article  PubMed  CAS  Google Scholar 

  • De Venes J, Bol JG, Hudson L, Schipper J, Steinbusch HW (1988) Atrial natriuretic factor-responding and cyclic guanosine monophosphate and (cGMP)-producing cells in the rat hippocampus: a combined micropharmacological and immunocytochemical approach. Brain Res 446:387–395

    Article  Google Scholar 

  • Dodge AB, Hechtman HB, Shepro D (1991) Microvascular endothelial-derived autacoids regulate pericyte contractility. Cell Motil Cytoskeleton 18:180–188

    Article  PubMed  CAS  Google Scholar 

  • Donati G, Pournaras CJ, Munoz JL, Poitry S, Poitry-Yamate CL, Tsacopoulos M (1995) Nitric oxide controls arteriolar tone in the retina of the miniature pig. Invest Ophthalmol Vis Sci 36:2228–2237

    PubMed  CAS  Google Scholar 

  • Fethiere J, Meloche S, Nguyen TT, Ong H, De Lean A (1989) Distinct properties of atrial natriuretic factor receptor subpopulations in epithelial and fibroblast cell line. Mol Pharmacol 35:584–592

    PubMed  CAS  Google Scholar 

  • Ferrari-Dileo G, Davis EB, Anderson DR (1992) Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture. Invest Ophthalmol Vis Sci 33:42–47

    PubMed  CAS  Google Scholar 

  • Flammer J (1993) Therapeutical aspects of normal-tension glaucoma. Curr Opin Ophthalmol 4:58–64

    Article  Google Scholar 

  • Flammer J (1996) To what extent are vascular factors involved in the pathogenesis of glaucoma? In: Kaiser HJ, Flammer J, Hendrickson P (eds) Ocular blood flow. Karger, Basel, pp 12–39

    Google Scholar 

  • Flammer J, Gasser P, Prünte Ch, Yao K (1992) The probable involvement of factors other than ocular pressure in the pathogenesis of glaucoma. In: Drance SM, Buskirk Van EM, Neufeld AH (eds) Pharmacology of glaucoma. Williams & Wilkins, Baltimore, pp 273–283

    Google Scholar 

  • Frank RN, Dutta S, Mancini MA (1987) Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci 28:1086–1091

    PubMed  CAS  Google Scholar 

  • Frank RN, Turczyn TJ, Das A (1990) Pericyte coverage of retinal and cerebral capillaries. Invest Ophthalmol Vis Sci 31:999–1007

    PubMed  CAS  Google Scholar 

  • Gasser P, Flammer J (1990) Short-and long-term effect of nifedipine on the visual field of patients with presumed vasospasm. J Int Med Res 18:334–339

    PubMed  CAS  Google Scholar 

  • Gasser P, Flammer J (1991) Blood-cell velocity in the nailfold capillaries of patients with normal-tension or high-tension glaucoma and of healthy controls. Am J Ophthalmol 111:585–588

    PubMed  CAS  Google Scholar 

  • Geijer A, Bill A (1979) Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 18:1030–1042

    PubMed  CAS  Google Scholar 

  • Graham SL, Drance SM, Wijsman K, Douglas GR, Mikelberg S (1995) Ambulatory blood-pressure monitoring in glaucoma. Ophthalmology 102:61–69

    PubMed  CAS  Google Scholar 

  • Grunwald JE, Riva CE, Stone RA, Keates EU, Petrig BL (1984) Retinal autoregulation in open-angle glaucoma. Ophthalmology 91:1690–1694

    PubMed  CAS  Google Scholar 

  • Guthauser U, Flammer J, Mahler F (1988) The relationship between digital and ocular vasospasm. Graefes Arch Clin Exp Ophthalmol 226:224–226

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC (1991) Overview of the circulation, and medical physics of pressure, flow, and resistance. In: Guyton AC (ed) Textbook of medical physiology. 8th ed. Saunders, Philadelphia, pp 150–157

    Google Scholar 

  • Haefliger IO (1995) Regulation des Blutflusses in der Papille Search Glaucoma 3:80–85

    Google Scholar 

  • Haefliger IO, Anderson DR (1996a) Blood flow regulation in the optic nerve head. In: Ritch R, Shields MB, Krupin T (eds) The glaucomas. 2nd ed. Mosby-Year Book, St. Louis, pp 189–197

    Google Scholar 

  • Haefliger IO, Anderson DR (1996b) Pericytes and capillary blood flow modulation. In: Kaiser HJ, Flammer J, Hendrickson Ph (eds) Ocular blood flow. Karger, Basel, pp 74–78

    Google Scholar 

  • Haefliger IO, Anderson DR (1997a) Effect of oxygen on relaxation of retinal pericytes by sodium nitroprusside. Graefes Arch Clin Exp Ophthalmol 235:388–392

    Article  PubMed  CAS  Google Scholar 

  • Haefliger IO, Anderson DR (1997b) Oxygen modulation of guanylate cyclase-mediated retinal pericyte relaxations to SIN-1 and ANP. Invest Ophthalmol Vis Sci 38:1563–1568

    PubMed  CAS  Google Scholar 

  • Haefliger IO, Flammer J (1997a) The logic of the prevention of glaucomatous damage progression. Curr Opin Ophthalmol 8:35–36

    Article  Google Scholar 

  • Haefliger IO, Flammer J (1997b) Le syndrome vasospastique un facteur de risque associé au glaucome. In: Béchetoille A (ed) Glaucomes. 2nd éd. Jappernard, Nantes (273–275)

    Google Scholar 

  • Haefliger IO, Flammer J, Lüscher TF (1992) Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci 33:2340–2343

    PubMed  CAS  Google Scholar 

  • Haefliger IO, Flammer J, Lüscher TF (1993a) Endothelium-derived factors as local modulators of the vascular tone: implications in the ophthalmic and cerebral circulation. In: Lehmenkühler A, Grotemeyer K-H, Tegtmeier D (eds) Migraine: basic mechanisms and treatment. Urban & Schwarzenberg, Munich, pp 185–202

    Google Scholar 

  • Haefliger IO, Flammer J, Lüscher TF (1993b) Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci 34:1722–1730

    PubMed  CAS  Google Scholar 

  • Haefliger IO, Meyer P, Flammer J, Lüscher TF (1994a) The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology. Surv Ophthalmol 39:123–132

    Article  PubMed  CAS  Google Scholar 

  • Haefliger IO, Zschauer A, Anderson DR (1994b) Relaxation of retinal pericytes contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci 35:991–997

    PubMed  CAS  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179

    Article  PubMed  CAS  Google Scholar 

  • Hayreh SS, Zimmerman BM, Podhajsky P, Alward WLM (1994) Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol 117:603–624

    PubMed  CAS  Google Scholar 

  • Helbig H, Kornacker S, Berweck S, Stahl F, Lepple-Wienhues A, Wiederholt M (1992) Membrane potentials in retinal capillary pericytes: excitability and effect of vasoactive substances. Invest Ophthalmol Vis Sci 33:2105–2112

    PubMed  CAS  Google Scholar 

  • Henrich WL, McAllister EA, Smith PB, Campbell WB (1988) Guanosine 3′,5′-cyclic monophosphate as a mediator of inhibition of renin release. Am J Physiol 255:F474–F478

    PubMed  CAS  Google Scholar 

  • Hoste AM, Andries LJ (1991) Contractile responses of isolated bovine retinal microar-teries to acetylcholine. Invest Ophthalmol Vis Sci 32:1996–200

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Wood KS, Harbison RG, Kadowitz PJ (1986) Atriopeptin II relaxes and elevates cGMP in bovine pulmonary artery but not vein. J Appl Physiol 60:1128–1133

    PubMed  CAS  Google Scholar 

  • Joyce NC, DeCamilli P, Boyles J (1984) Pericytes, like vascular smooth muscle, contain high levels of cyclic GMP-dependent protein kinase. Microvasc Res 28:206–219

    Article  PubMed  CAS  Google Scholar 

  • Joyce NC, Haire MF, Palade GE (1985a) Contractile proteins in pericytes. I. Immunoper-oxidase localization of tropomyosin. J Cell Biol 100:1379–1386

    Article  PubMed  CAS  Google Scholar 

  • Joyce NC, Haire MF, Palade GE (1985b) Contractile proteins in pericytes. II. Immuno-cytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol 100:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Kaiser HJ, Flammer J (1991) Systemic hypotension: a risk factor for glaucomatous damage. Ophthalmologica 203:105–108

    Article  PubMed  CAS  Google Scholar 

  • Kaiser HJ, Flammer J, Graf T, Stümpfig D (1993) Systemic blood pressure in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 231:677–680

    Article  PubMed  CAS  Google Scholar 

  • Kanellopoulos AJ, Erickson KA, Netland PA (1996) Systemic calcium channel blockers and glaucoma. J Glaucoma 5:357–362

    Article  PubMed  CAS  Google Scholar 

  • Kelley C, D’Amore P, Hechtman HB, Shepro D (1987) Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J Cell Biol 104:483–490

    Article  PubMed  CAS  Google Scholar 

  • Kelley C, D’Amore P, Hechtman HB, Shepro D (1988) Vasoactive hormones and cAMP affect pericyte contraction and stress fibers in vitro. J Muscle Res Cell Motil 9:184–194

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa J, Shirai H, Go FJ (1989) The effect of calcium antagonist on visual field in low-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 227:408–412

    Article  PubMed  CAS  Google Scholar 

  • Kurz A, Della Bruna R, Pfeilschifter J, Taugner R, Bauer C (1986) Atrial natriuretic peptide inhibits renin release from juxtaglomerular cells by a cGMP-mediated process. Proc Natl Acad Sci USA 83:4769–4773

    Article  Google Scholar 

  • Kuwabara T, Cogan DG (1963) Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69:492–502

    PubMed  CAS  Google Scholar 

  • Lee T-S, Hu K-Q, Chao T, King GL (1989) Characterization of endothelin receptors and effects of endothelin on diacylglycerol and protein kinase C in retinal capillary pericytes. Diabetes 38:1643–1646

    Article  PubMed  CAS  Google Scholar 

  • Leitman DC, Andresen JW, Catalano RM, Waldman SA, Tuan JJ, Murad F (1988) Atrial natriuretic peptide binding, cross-linking, and stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity in cultured cells. J Biol Chem 263:4720–4728

    Google Scholar 

  • Lipowsky HH, Kolvalcheck S, Zweifach BW (1978) The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res 43: 738–749

    PubMed  CAS  Google Scholar 

  • McLaren MJ, Inana G, Li CY (1993) Double fluorescent vital assay of phagocytosis by cultured retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 34:317–326

    PubMed  CAS  Google Scholar 

  • Nayak RC, Berman AB, George KL, Eisenbarth GS, King GL (1988) A monoclonal antibody (3G5)-defined ganglioside antigen is expressed on the cell surface of microvascular pericytes. J Exp Med 167:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Ohhashi T, Watanabe N, Kawai Y (1990) Effect of atrial natriuretic peptide on isolated bovine mesenteric lymph vessels. Am J Physiol 259:H42–47

    PubMed  CAS  Google Scholar 

  • Petrig B, Werner EB, Riva CE, Grunwald J (1985) Response of macular capillary blood flow to changes in intraocular pressure as measured by blue field stimulation technique. Doc Ophthalmol Proc Ser 42:447–451 (Sixth International Visual Field Symposium)

    Google Scholar 

  • Pillunat LE (1998) Vasoactive stimuli and visual field stimulation. In: Haefliger IO, Flammer J (eds) NO and endothelin in the pathogenesis of glaucoma. Lippincott-Raven, New York, pp 89–101

    Google Scholar 

  • Pillunat LE, Stodtmeister R, Wilmanns I, Christ T (1985) Autoregulation of ocular blood flow during changes in intraocular pressure: preliminary results. Graefes Clin Exp Ophthalmol 223:219–223

    Article  CAS  Google Scholar 

  • Pillunat LE, Stodtmeister R, Wilmanns I (1987) Pressure compliance of the optic nerve head in low tension glaucoma. Br J Ophthalmol 71:181–187

    Article  PubMed  CAS  Google Scholar 

  • Pillunat LE, Lang GK, Harris A (1994) The visual response to increased ocular blood flow in normal pressure glaucoma. Surv Ophthalmol 38(Suppl):S139–S148

    Article  PubMed  Google Scholar 

  • Pillunat LE, Anderson DR, Knighton RW, Joos KM, Feuer WJ (1997) Autoregulation in human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 64:737–744

    Article  PubMed  CAS  Google Scholar 

  • Pournaras CJ (1996) Autoregulation of ocular blood flow. In: Kaiser HJ, Flammer J, Hendrickson Ph (eds) Ocular blood flow. Karger, Basel, pp 40–50

    Google Scholar 

  • Rapoport RM, Waldman SA, Schwarta K, Winquist RJ, Murad F (1985) Effect of atrial natriuretic factor, sodium nitroprusside, and acetylcholine on cGMP levels and relaxation in rat aorta. Eur J Pharmacol 115:219–229

    Article  PubMed  CAS  Google Scholar 

  • Riva CE, Grunwald JE, Sinclair SH (1983) Laser Doppler velocimetry of the effect of pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 24:47–51

    PubMed  CAS  Google Scholar 

  • Riva CE, Grunwald JE, Petrig BL (1986) Autoregulation of human retinal blood flow: an investigation with laser Doppler velocimetry. Invest Ophthalmol Vis Sci 27:1706–1712

    PubMed  CAS  Google Scholar 

  • Robert Y, Steiner D, Hendrickson P (1989) Papillary circulation dynamics in glaucoma. Graefes Arch Clin Exp Ophthalmol 227:436–439

    Article  PubMed  CAS  Google Scholar 

  • Robinson R, Riva CE, Grunwald JE, Petrig BL, Sinclair SH (1986) Retinal blood flow autoregulation to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 27:722–726

    PubMed  CAS  Google Scholar 

  • Shields MB (1992) Textbook of glaucoma. 3rd ed. Williams & Wilkins, Baltimore, pp 431–629

    Google Scholar 

  • Shigematsu Y, Vaughn J, Touchard CL, Frohlich ED, Alam J, Cole FE (1993) Different ATP effects on natriuretic peptide receptor subtypes in LLC-PK1 and NIH-3T3 cells. Life Sci 53:865–874

    Article  PubMed  CAS  Google Scholar 

  • Sinclair SH, Grunwald JE, Riva CE, Braunstein SN, Nichols CW, Schwarz SS (1982) Retinal vascular autoregulation in diabetes mellitus. Ophthalmology 89: 748–750

    PubMed  CAS  Google Scholar 

  • Sossi N, Anderson DR (1983) Effect of elevated intraocular pressure on blood flow: occurrence in cat optic nerve head studied with iodoantipyrine 1–125. Arch Ophthalmol 101:98–101

    PubMed  CAS  Google Scholar 

  • Spaeth GL (1996) Proper outcome measurements regarding glaucoma: the inadequacy of using intraocular pressure alone. Eur J Ophthalmol 6:101–105

    PubMed  CAS  Google Scholar 

  • Tamaoki J, Kobayashi K, Sakai N, Kanemura T, Horii S, Isono K, Takeuchi S, Chiyotani A, Yamawaki I, Takizawa T (1991) Atrial natriuretic factor inhibits ciliary motility in cultured rabbit tracheal epithelium. Am J Physiol 260:C201–C205

    PubMed  CAS  Google Scholar 

  • Tilton RG, Kilo C, Williamson JR, Murch DW (1979) Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvasc Res 18: 336–352

    Article  PubMed  CAS  Google Scholar 

  • Toussaint D, Kuwabara T, Cogan DG (1961) Retinal vascular patterns. II. Human retinal vessels studied in three dimensions. Arch Ophthalmol 65:575–581

    PubMed  CAS  Google Scholar 

  • Ulrich WD, Ulrich C, Bohne BD (1986) Deficient autoregulation and lengthening of the diffusion distance in the anterior optic nerve circulation in glaucoma: an electro-encephalo-dynamographic investigation. Ophthalmol Res 18:253–259

    Article  CAS  Google Scholar 

  • Voyata J, Via D, Butterfield C, Zetter B (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoproteins. J Cell Biol 99:2034–2040

    Article  Google Scholar 

  • Wallow IH, Bindley CD, Reboussin DM, Gange SJ, Fisher MR (1993) Systemic hypertension produces pericyte changes in retinal capillaries. Invest Ophthalmol Vis Sci 34:420–430

    PubMed  CAS  Google Scholar 

  • Weinstein JM, Funsch D, Page RB, Brennan RW (1982) Optic nerve blood flow and its regulation. Invest Ophthalmol Vis Sci 23:640–645

    PubMed  CAS  Google Scholar 

  • Weinstein JM, Duckrow RB, Beard D, Brennan RW (1983) Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 24:1559–1565

    PubMed  CAS  Google Scholar 

  • Wink DA, Beckman JS, Ford PC (1996) Kinetics of nitric oxide reaction in liquid and gas phase. In: Freelish M, Stamler S (eds) Methods in nitric oxide research. Wiley, Chichester, pp 29–37

    Google Scholar 

  • Zweifach BW, Lipowsky HH (1984) Pressure-flow relations in blood and lymph microcirculation. In: Handbook of physiology. Sect 2: The cardiovascular system, Vol IV: Microcirculation. American Physiological Society, Bethesda, pp: 251–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Haefliger, I.O., Anderson, D.R. (2000). Cell Culture Studies of Oxygen, Nitric Oxide, and Retinal Pericytes’ Contractile Tone. In: Kashii, S., Akaike, A., Honda, Y. (eds) Nitric Oxide in the Eye. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67949-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67949-3_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68017-8

  • Online ISBN: 978-4-431-67949-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics