Origin and Function of Nitrergic Nerves in the Human Eye: Morphological Aspects

  • Ernst R. Tamm
  • Elke Lütjen-Drecoll


Signals transmitted by the ocular part of the autonomic nervous system regulate important auxiliary systems that are necessary to maintain the basic function of the eye, the perception of light. A considerable number of physiological and morphological studies during the past few years have provided strong evidence that numerous ocular autonomic nerves contain the neuronal isoform of nitric oxide synthase (NOS), the enzyme that synthesizes nitric oxide (NO), and likely use NO as a neurotransmitter. In the eye, such nitrergic nerves are involved in regulating the blood supply to the various intraocular tissues and appear to take part in accommodation and the circulation of aqueous humor.


Nitric Oxide Trabecular Meshwork Ciliary Muscle Ciliary Ganglion Posterior Ciliary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alder VA, Cringle SJ, Constable IJ (1983) The retinal oxygen profile in cats. Invest Ophthalmol Vis Sci 24:30–36PubMedGoogle Scholar
  2. Alm A (1992) Ocular circulation. In: Hart WMJ (ed) Adler’s physiology of the eye. Mosby-Year Book, St. Louis, pp 198–227Google Scholar
  3. Alm A, Bill A (1970) Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures. Acta Physiol Scand 80:19–28PubMedCrossRefGoogle Scholar
  4. Alm A, Bill A (1972) The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats: a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand 84:306–319PubMedCrossRefGoogle Scholar
  5. Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus):a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29PubMedCrossRefGoogle Scholar
  6. Ashton N (1952) Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. II. Aqueous veins. Br J Ophthalmol 36:265PubMedCrossRefGoogle Scholar
  7. Bates TE, Loesch A, Burnstock G, Clark JB (1996) Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Commun 218:40–44PubMedCrossRefGoogle Scholar
  8. Beesley JE (1995) Histochemical methods for detecting nitric oxide synthase. Histochem J 27:757–769PubMedGoogle Scholar
  9. Bergua A (1995) Nitrergische Reaktivtät in den Endothelzellen der menschlichen uvealen Gefässe. Klin Monatsbl Augenheilkd 206:115–121PubMedCrossRefGoogle Scholar
  10. Bergua A (1996) NADPH-diaphorase-positive innervation of the central retinal artery of the human optic nerve. Exp Eye Res 63(Suppl):S.142Google Scholar
  11. Bergua A, Jünnemann A, Naumann GOH (1993) NADPH-D reactive choroidal ganglion cells in the human eye. Klin Monatsbl Augenheilkd 203:77–82PubMedCrossRefGoogle Scholar
  12. Bergua A, Neuhuber WL, Naumann GOH (1994) Visualization of human choroidal ganglion cells with the supravital fluorescent dye 4-(4-diethylaminostyryl)-N-methylpyrid-ium iodide. Ophthalmic Res 26:290–295PubMedCrossRefGoogle Scholar
  13. Bergua A, Neuhuber WL, Mayer B (1995) Comparative anatomy of nitrinergic innervation in avian choroid. Invest Ophthalmol Vis Sci 36:S121 (ARVO abstracts)Google Scholar
  14. Bergua A, Mayer B, Neuhuber WL (1996) Nitrergic and VIPergic neurons in the choroid and ciliary ganglion of the duck Anis carina. Anat Embryol (Berl) 193:239–248CrossRefGoogle Scholar
  15. Bill A (1967) Effects of atropine and pilocarpine on aqueous humor dynamics in cynomol-gus monkeys (Macaca irus). Exp Eye Res 6:120–125PubMedCrossRefGoogle Scholar
  16. Bill A (1968) Capillary permeability to and extravascular dynamics of myoglobin, albumin and gammaglobulin in the uvea. Acta Physiol Scand 73:204–219PubMedCrossRefGoogle Scholar
  17. Bill A (1985) Some aspects of the ocular circulation: Friedenwald lecture. Invest Ophthalmol Vis Sci 26:410–424PubMedGoogle Scholar
  18. Bill A (1991) The 1990 Endre Balazs lecture: effects of some neuropeptides on the uvea. Exp Eye Res 53:3–11CrossRefGoogle Scholar
  19. Bill A, Törnquist P, Alm A (1980) The permeability of the ocular vessels. Trans Ophthalmol Soc UK 100:332–336PubMedGoogle Scholar
  20. Bito LZ, Miranda OC (1987) On the evolution of visual accommodation, the non-accommodating eye and presbyopia. In: De Vincentiis M (ed) The fundamental aging processes of the eye. Fondazione “Giorgio Ronchi” LX,Tipographia Baccini & Chiappi, Florence, pp 58–97Google Scholar
  21. Bito LZ, Miranda OC (1989) Accommodation and presbyopia. In: Reinecke RD (ed) Ophthalmology annual. Lippincott-Raven, New York, pp 103–127Google Scholar
  22. Blottner D, Grozdanovic Z, Gossrau R (1995) Histochemistry of nitric oxide synthase in the nervous system. Histochem J 27:785–811PubMedGoogle Scholar
  23. Boeke J (1933) Innervationsstudien. III. Die Nervenversorgung des M. ciliaris und des sphincter iridis bei Säugern und Vögeln. Z Mikrosk Anat Forsch 33:233–275Google Scholar
  24. Bredt DS, Hwang PM, Snyder SH (1992) Localization of nitric oxide indicating a neuronal role for nitric oxide. Nature 347:768–770CrossRefGoogle Scholar
  25. Bryson JM, Wolter JR, O’Keefe NT (1966) Ganglion cells in the human ciliary body. Arch Ophthalmol 75:57–60PubMedGoogle Scholar
  26. Butler JM, Ruskell GL, Cole DF, Unger WG, Zhang SQ, Blank MA, McGregor GP, Bloom SR (1984) Effects of VIIth (facial) nerve degeneration on vasoactive intestinal polypeptide and substance P levels in ocular and orbital tissues of the rabbit. Exp Eye Res 39:523–532PubMedCrossRefGoogle Scholar
  27. Campbell FW, Robson JG, Westheimer G (1959) Fluctuations in accommodation under steady viewing conditions. J Physiol (Lond) 145:579–594Google Scholar
  28. Castro-Correira J (1967) Studies on the innervation of the uveal tract. Ophthalmologica 154:497–520CrossRefGoogle Scholar
  29. Chakravarthy U, Stitt AW, McNally J, Bailie JR, Hoey EM, Duprex P (1994) Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes. Curr Eye Res 14:285–294CrossRefGoogle Scholar
  30. Chin NB, Ishikawa S, Lappin H, Davidowitz J, Breinin GM (1968) Accommodation in monkeys induced by midbrain stimulation. Invest Ophthalmol Vis Sci 7:386–396Google Scholar
  31. Dawson TM, Bredt DS, Fotuhi PM, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88:7797–7801PubMedCrossRefGoogle Scholar
  32. De Stefano ME, Luzzatto AC, Mugnaini E (1993) Neuronal ultrastructure and somatostatin immunolocalization in the ciliary ganglion of chicken and quail. J Neurocytol 22:868–892PubMedCrossRefGoogle Scholar
  33. Deussen A, Sonntag M, Vogel R (1993) L-Arginine-derived nitric oxide: a major determinant of uveal blood flow. Exp Eye Res 57:129–134PubMedCrossRefGoogle Scholar
  34. Ding YQ, Takada M, Kaneko T, Mizuno M (1995) Colocalization of vasoactive intestinal polypeptide and nitric oxide in penis-innervating neurons in the major pelvic ganglion of the rat. Neuroreport 22:129–131Google Scholar
  35. Donati G, Pournaras CJ, Munoz J-L, Poitry S, Poitry-Yamate CL, Tsacopoulos M (1995) Nitric oxide controls arteriolar tone in the retina of the miniature pig. Invest Ophthalmol Vis Sci 36:2228–2237PubMedGoogle Scholar
  36. Dryer SE, Chiapinelli VA (1985) Properties of choroid and ciliary neurons in the avian ciliary ganglion and evidence for substance P as a neurotransmitter. J Neurosci 5:2654–2661PubMedGoogle Scholar
  37. Duke-Elder S (1958) System of ophthalmology. Vol. I. The eye in evolution. Mosby, St. LouisGoogle Scholar
  38. Ehinger B, Sundler F, Uddman R (1983) Functional morphology in two parasympathetic ganglia: the ciliary and the pterygopalatine. In: Elfvin L-G (ed) Autonomic ganglia. Wiley, New York, pp 97–123Google Scholar
  39. Elsas T, Edvinsson L, Sundler F, Uddman R (1994) Neuronal pathways to the rat conjunctiva revealed by retrograde tracing and immunocytochemistry. Exp Eye Res 58:117–126PubMedCrossRefGoogle Scholar
  40. Feeney L, Hogan MJ (1961) Electron microscopy of the human choroid. II. The choroidal nerves. Am J Ophthalmol 51:1072–1083PubMedGoogle Scholar
  41. Fine BS, Yanoff M, Stone RA (1981) A clinicopathologic study of four cases of primary open-angle glaucoma compared to normal eyes. Am J Ophthalmol 91:88–105PubMedGoogle Scholar
  42. Fischer F (1933) Entwicklungsgeschichtliche und anatomische Studien über den Skleral-sporn im menschlichen Auge. Graefes Arch Ophthalmol 133:318–358CrossRefGoogle Scholar
  43. Fitzgerald MEC, Reiner A (1993) NADPH-diaphorase positive neurons and fibers in the ciliary ganglion and choroid of the pigeon. Soc Neurosci Abstr 19:1202 (abstract)Google Scholar
  44. Flügel C, Bárány EH, Lütjen-Drecoll E (1990) Histochemical differences within the ciliary muscle and its function in accommodation. Exp Eye Res 50:219–226PubMedCrossRefGoogle Scholar
  45. Flügel C, Tamm E, Lütjen-Drecoll E (1991) Different cell populations in bovine trabecular meshwork: an ultrastructural and immunohistochemical study. Exp Eye Res 52:681–690PubMedCrossRefGoogle Scholar
  46. Flügel C, Tamm ER, Mayer B, Lütjen-Drecoll E (1994) Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 35:592–599PubMedGoogle Scholar
  47. Flügel-Koch C, Kaufman PL, Lütjen-Drecoll E (1994) Association of choroidal ganglion cell plexus with the fovea centralis. Invest Ophthalmol Vis Sci 35:4268–4272PubMedGoogle Scholar
  48. Flügel-Koch C, May CA, Lütjen-Drecoll E (1996) Presence of a contractile cell network in the human choroid. Ophthalmologica 210:296–302PubMedCrossRefGoogle Scholar
  49. Frank RN, Turczyn TJ, Das A (1990) Pericyte coverage of retinal and cerebral arteries. Invest Ophthalmol Vis Sci 31:999–1007PubMedGoogle Scholar
  50. Franz V (1934) Vergleichende Anatomie des Wirbeltierauges. In: Bolk L, Göppert E, Kallius E, Lubasch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere. Vol. II/2. Urban & Schwarzenberg, Berlin, pp 1–1202Google Scholar
  51. Funk R (1991) Ultrastructure of the ciliary process vasculature in cynomolgus monkeys. Exp Eye Res 53:461–469PubMedCrossRefGoogle Scholar
  52. Funk R, Rohen JW (1988) SEM studies of the functional morphology of the ciliary process vasculature in the cynomolgus monkey: reactions after application of epinephrine. Exp Eye Res 47:653–663PubMedCrossRefGoogle Scholar
  53. Funk R, Rohen JW (1990) Scanning electron microscopic study on the vasculature of the human anterior eye segment, especially with respect to the ciliary processes. Exp Eye Res 51:651–661PubMedCrossRefGoogle Scholar
  54. Funk RHW, Rohen JW (1995) Scanning electron microscopic study of episcleral arteriovenous anastomoses in the owl and cynomolgus monkey. Curr Eye Res 15: 321–327CrossRefGoogle Scholar
  55. Funk RHW, Mayer B, Wörl J (1994) Nitrergic innervation and nitrergic cells in arteriovenous anastomoses. Cell Tissue Res 277:477–484PubMedCrossRefGoogle Scholar
  56. Funk RHW, Gehr J, Rohen JW (1996) Short-term hemodynamic changes in episcleral arteriovenous anastomoses correlate with venous pressure and IOP changes in the albino rabbit. Curr Eye Res 15:87–93PubMedCrossRefGoogle Scholar
  57. Furness JB, Bornstein JC, Trussell DC (1988) Shapes of nerve cells in the myenteric plexus of the guinea-pig small intestine revealed by the intracellular injection of dye. Cell Tissue Res 254:561–571PubMedCrossRefGoogle Scholar
  58. Gaasterland DE, Jocson VL, Sears ML (1970) Channels of aqueous outflow and related blood vessels. II. Episcleral arteriovenous anastomoses in the rhesus monkey eye (Macaca mulatta). Arch Ophthalmol 84:770–775PubMedGoogle Scholar
  59. Goh Y, Hotehama Y, Mishima HK (1995) Characterization of ciliary muscle relaxation by various agents in cats. Invest Ophthalmol Vis Sci 36:1188–1192PubMedGoogle Scholar
  60. Haefliger IO, Zschauer A, Anderson DR (1994) Relaxation of retinal pericyte contractile tone through the nitric oxid-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci 35:991–997PubMedGoogle Scholar
  61. Hirano N (1941) Nervöse Innervation des Corpus ciliare des Menschen. Graefes Arch Ophthalmol 142:549–559CrossRefGoogle Scholar
  62. Hope BC, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88:2811–2814PubMedCrossRefGoogle Scholar
  63. Ishikawa T (1962) Fine structure of the human ciliary muscle. Invest Ophthalmol Vis Sci 1:587–608Google Scholar
  64. Iwanoff A (1874) Der Uvealtractus. In: Graefe A, Saemisch T (eds) Handbuch der gesamten Augenheilkunde. Engelmann, Leipzig, pp 265–287Google Scholar
  65. Jocson VL, Grant WM (1965) Interconnections of blood vessels and aqueous vessels in human eyes. Arch Ophthalmol 73:707–720PubMedGoogle Scholar
  66. Jocson VL, Sears ML (1968) Channels of aqueous outflow and related blood vessels. I. Macaca mulatta (rhesus). Arch Ophthalmol 80:104–114PubMedGoogle Scholar
  67. Jocson VL, Sears ML (1969) Channels of aqueous outflow and related blood vessels. II. Cercopithecus ethiops (Ethiopian green or green vervet). Arch Ophthalmol 81:244–253PubMedGoogle Scholar
  68. Kaufman PL (1992) Accommodation and presbyopia. In: Hart WMJ (ed) Adler’s physiology of the eye. Mosby-Year Book, St. Louis, pp 391–411Google Scholar
  69. Kirch W, Neuhuber W, Tamm ER (1995) Immunohistochemical localization of neuropeptides in the human ciliary ganglion. Brain Res 681:229–234PubMedCrossRefGoogle Scholar
  70. Kirch W, Horneber M, Tamm ER (1996) Characterization of meibomian gland innervation in the cynomolgus monkey (Macaca fascicularis). Anat Embryol (Berl) 193:365–375CrossRefGoogle Scholar
  71. Klatt P, Heinzel B, John M, Kastner M, Böhme E, Mayer B (1992) Ca2/cahnodulin-dependent cytochrome-c reductase activity of brain nitric oxide synthase. J Biol Chem 267:11374–11378PubMedGoogle Scholar
  72. Kobzik L, Bredt DS, Lowenstein CJ, Drazen J, Gaston B, Sugarbaker D, Stamler JS (1993) Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol 9:371–377PubMedGoogle Scholar
  73. Kobzik L, Stringer B, Balligand J-L, Reid MB, Stamler JS (1995) Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun 211:375–381PubMedCrossRefGoogle Scholar
  74. Krause W (1861) Ganglienzellen im Orbiculus ciliaris. In: Krause W (ed) Anatomische Untersuchungen. Hannover, p 91Google Scholar
  75. Krümmel H (1938) Die Nerven des menschlichen Ziliarkörpers. Graefes Arch Ophthalmol 138:845–865CrossRefGoogle Scholar
  76. Kubes P (1992) Nitric oxide modulates epithelial permeability in the feline small intestine. Am J Physiol 262:G1138–G1142PubMedGoogle Scholar
  77. Kummer W, Fischer A, Mundel P, Mayer B, Hoba B, Philippin B, Preissler U (1992) Nitric-oxide synthase in VIP-containing vasodilator nerve-fibers in the guinea-pig. Neuroreport 3:653–655PubMedCrossRefGoogle Scholar
  78. Kupfer C (1962) Relationship of ciliary body meridional muscle and corneoscleral trabecular meshwork. Arch Ophthalmol 68:132–136Google Scholar
  79. Kurus E (1955) Über ein Ganglienzellsystem der menschlichen Aderhaut. Klin Monatsbl Augenheilkd 127:198–206Google Scholar
  80. Laties AM (1967) Central retinal artery innervation: absence of adrenergic innervation to intraocular branches. Arch Ophthalmol 77:405–409PubMedGoogle Scholar
  81. Lauber H (1936a) Der Strahlenkörper (Corpus ciliare). D. Die Nerven des Strahlenkörpers. In: von Möllendorf W (ed) Handbuch der mikroskopischen Anatomie des Menschen. Vol 3: Haut und Sinnesorgane. Part 2: Auge. Springer, Berlin, pp 165–172Google Scholar
  82. Lauber H (1936b) Die Aderhaut (Choroidea). In: von Möllendorf W (ed) Handbuch der mikroskopischen Anantomie. Vol 3: Haut und Sinnesorgane. Part 2: Auge. Springer, Berlin, pp 91–133Google Scholar
  83. Lin AY-J, Szmydynger-Chodobska J, Rahman MP, Mayer B, Monfils PR, Johanson CE, Lim Y-P, Corsetti S, Chodobski A (1996) Immunohistochemical localization of nitric oxide synthase in rat anterior choroidal artery, stromal blood microvessels, and choroid plexus epithelial cells. Cell Tissue Res 285:411–418PubMedCrossRefGoogle Scholar
  84. Llewellyn-Smith IJ, Song ZM, Costa M, Bredt DS, Snyder SH (1992) Ultrastructural localization of nitric oxide synthase immunoreactivity in guinea pig enteric neurons. Brain Res 577:337–342PubMedCrossRefGoogle Scholar
  85. Lopez-Costa JJ, Goldstein J, Mallo G, Saavedra JP (1995) NADPH-diaphorase distribution in the choroid after continuous illumination. Neuroreport 26:361–364CrossRefGoogle Scholar
  86. Lou HC, Edvinsson L, MacKenzie ET (1987) The concept of coupling blood flow to brain function: revision required? Ann Neurol 22:289–297PubMedCrossRefGoogle Scholar
  87. Maciewicz R, Phipps BS, Foote WE, Aronin N, DiFiglia M (1983) The distribution of substance P-containing neurons in the cat Edinger-Westphal nucleus: relationship to efferent projection systems. Brain Res 270:217–230PubMedCrossRefGoogle Scholar
  88. Macintosh SR (1974) The innervation of the conjunctiva in monkeys: an electron microscopic and nerve degeneration study. Graefes Arch Klin Exp Ophthalmol 192:105–116CrossRefGoogle Scholar
  89. Mann RM, Riva CE, Stone RA, Barnes GE, Cranstoun SD (1995) Nitric oxide and choroidal blood flow regulation. Invest Ophthalmol Vis Sci 36:925–930PubMedGoogle Scholar
  90. Matsumoto T, Nakane M, Pollock JS, Kuk JE, Förstermann U (1993) A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative. Neurosci Lett 155:61–64PubMedCrossRefGoogle Scholar
  91. May PJ, Warren S (1993) Ultrastructure of the macaque ciliary ganglion. J Neurocytol 22:1073–1095PubMedCrossRefGoogle Scholar
  92. Meighan SS (1956) Blood vessels of the bulbar conjunctiva in man. Br J Ophthalmol 40:513–526PubMedCrossRefGoogle Scholar
  93. Miller AS, Coster DJ, Costa M, Furness JB (1983) Vasoactive intestinal polypeptide immunoreactive nerve fibres in the human eye. Aust J Ophthalmol 11:185–193PubMedCrossRefGoogle Scholar
  94. Morris JL, Gibbins IL, Kadowitz PJ, Herzog H, Kreulen DL, Toda N, Claing A (1995) Roles of peptides and other substances in cotransmission from vascular autonomic and sensory neurons. Can J Physiol Pharmacol 73:521–332PubMedCrossRefGoogle Scholar
  95. Morris R, Southam E, Gittins SR, Garthwaite J (1993) NADPH-diaphorase staining in autonomic and somatic cranial ganglia of the rat. Neuroreport 4:62–64PubMedCrossRefGoogle Scholar
  96. Morrison JC, Van Buskirk EM (1983) Anterior collateral circulation in the primate eye. Ophthalmology 90:707–715PubMedGoogle Scholar
  97. Morrison JC, Van Buskirk EM (1984) Ciliary process microvasculature of the primate eye. Am J Ophthalmol 97:372–384PubMedGoogle Scholar
  98. Mulder H, Uddman R, Moller K, Elsas T, Ekblad E, Alumets J, Sundler F (1995) Pituitary adenylate cyclase activating polypeptide is expressed in autonomic neurons. Regul Pept 59:121–128PubMedCrossRefGoogle Scholar
  99. Müller H (1859a) Über Ganglienzellen im Ziliarmuskel des Menschen. Verh Physik Med Ges Würzburg 10:107–110Google Scholar
  100. Müller H (1859b) Über glatte Muskelfasern und Nervengeflechte der Choroidea im menschlichen Auge. Verh Physik Med Ges Würzburg 10:107–179Google Scholar
  101. Nathanson JA, McKee M (1995a) Identification of an extensive system of nitric oxide-producing cells in the ciliary muscle and outflow pathway of the human eye. Invest Ophthalmol Vis Sci 36:1765–1773PubMedGoogle Scholar
  102. Nathanson JA, McKee M (1995b) Alterations of ocular nitric oxide synthase in human glaucoma. Invest Ophthalmol Vis Sci 36:1774–1784PubMedGoogle Scholar
  103. Nilsson SFE (1994) PACAP-27 and PACAP-38: vascular effects in the eye and some other tissues in the rabbit. Eur J Pharmacol 253:17–25PubMedCrossRefGoogle Scholar
  104. Nilsson SFE (1996) Nitric oxide as a mediator of parasympathetic vasodilation in ocular and extraocular tissues in the rabbit. Invest Ophthalmol Vis Sci 37:2110–2119PubMedGoogle Scholar
  105. Nilsson SFE, Bill A (1984) Vasoactive intestinal polypeptide (VIP): effects in the eye and on regional blood flows. Acta Physiol Scand 121:385–392PubMedCrossRefGoogle Scholar
  106. Nilsson SFE, Linder J, Bill A (1985) Characteristics of uveal vasodilation produced by facial nerve stimulation in monkeys, cats and rabbits. Exp Eye Res 40:841–852PubMedCrossRefGoogle Scholar
  107. Nyborg NCB, Nielsen PJ (1994) Neurogenic nitric oxide accounts for the non-adrenergic non-cholinergic vasodilation in human posterior ciliary arteries. Invest Ophthalmol Vis Sci 34:1287 (ARVO abstracts)Google Scholar
  108. Osborne NN, Barnett NL, Herrera AJ (1993) NADPH diaphorase localization and nitric oxide synthetase activity in the retina and anterior uvea of the rabbit eye. Brain Res 610:194–198PubMedCrossRefGoogle Scholar
  109. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–525PubMedCrossRefGoogle Scholar
  110. Parver LM, Auker C, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646PubMedGoogle Scholar
  111. Parver LM, Auker CR, Carpenter DO, Doyle T (1982) Choroidal blood flow. II. Reflexive control in the monkey. Arch Ophthalmol 100:1327–1330PubMedGoogle Scholar
  112. Parver LM, Auker CR, Carpenter DO (1983) Choroidal blood flow. III. Reflexive control in human eyes. Arch Ophthalmol 101:1604–1606PubMedGoogle Scholar
  113. Perez GM, Keyser RB (1986) Cell body counts in human ciliary ganglia. Invest Ophthalmol Vis Sci 27:1428–1431PubMedGoogle Scholar
  114. Perez MT, Larsson B, Alm P, Andersson KE, Ehinger B (1995) Localisation of neuronal nitric oxide synthase-immunoreactivity in rat and rabbit retinas. Exp Brain Res 104:207–217PubMedCrossRefGoogle Scholar
  115. Price KJ, Hanson PJ, Whittle BJR (1996) Localization of constitutive isoforms of nitric oxide synthase in the gastric glandular mucosa of rats. Cell Tissue Res 285:157–163PubMedCrossRefGoogle Scholar
  116. Quartu M, Diaz G, Floris A, Lai ML, Priestley JV, Del Fiacco M (1992) Calcitonin gene-related peptide in the human trigeminal sensory system at developmental and adult life stages: immunohistochemistry, neuronal morphometry and coexistence with substance P. J Chem Neuroanat 5:143–157PubMedCrossRefGoogle Scholar
  117. Riva CE, Harino S, Shonat RD, Petrig BL (1991) Flicker evoked increase in optic nerve head blood flow in anesthetized cats. Neurosci Lett 128:291–296PubMedCrossRefGoogle Scholar
  118. Rohen H (1952) Der Ziliarkörper als funktionelles System. Gegenbaur Morphol Jahrb 92:415–440Google Scholar
  119. Rohen J (1956a) Arteriovenöse Anastomosen im Limbusbereich des Hundes. Graefes Arch Ophthalmol 157:361–367CrossRefGoogle Scholar
  120. Rohen JW (1956b) Über den Ansatz der Ciliarmuskulatur im Bereich des Kammerwinkels. Ophthalmologica 131:51–59PubMedCrossRefGoogle Scholar
  121. Rohen JW (1962) Sehorgan. In: Hofer H, Schultz AH, Starck D (eds) Primatologica, handbook of primatology. Vol. II/1. Karger, Basel, pp 6/1–210Google Scholar
  122. Rohen JW (1964) Ciliarkörper (Corpus ciliare). In: von Möllendorf W, Bargmann W (eds) Handbuch der mikroskopischen Anatomie des Menschen. Vol 3. Part 4: Haut und Sinnesorgane. Das Auge und seine Hilfsorgane. Springer, Berlin Heidelberg New York, pp 189–237Google Scholar
  123. Rohen JW (1982) The evolution of the primate eye in relation to the problem of glaucoma. In: Lütjen-Drecoll E (ed) Basic aspects of glaucoma research. Schattauer, Stuttgart, pp 3–33Google Scholar
  124. Rohen JW, Funk RHW (1994) Functional morphology of the episcleral vasculature in the rabbit and canine eye: presence of arteriovenous anastomoses. J Glaucoma 3:51–57PubMedCrossRefGoogle Scholar
  125. Roufail E, Stringer M, Rees S (1995) Nitric oxide synthase immunoreactivity and NADPH diaphorase staining are co-localised in neurons closely associated with the vasculature in rat and human retina. Brain Res 684:36–46PubMedCrossRefGoogle Scholar
  126. Ruskell GL (1965) The orbital distribution of the sphenopalatine ganglion in the rabbit. In: Rohen JW (ed) The structure of the eye. II. Symposium. Schattauer, Stuttgart, pp 355–368Google Scholar
  127. Ruskell GL (1970a) The orbital branches of the pterygopalatine ganglion and their relationship with internal carotid nerve branches in primates. J Anat 106:323–339PubMedGoogle Scholar
  128. Ruskell GL (1970b) An ocular parasympathetic nerve pathway of facial nerve origin and its influence on intraocular pressure. Exp Eye Res 10:319–330PubMedCrossRefGoogle Scholar
  129. Ruskell GL (1971) Facial parasympathetic innervation of the choroidal blood-vessels in monkeys. Exp Eye Res 12:166–172PubMedCrossRefGoogle Scholar
  130. Ruskell GL, Griffiths T (1979) Peripheral nerve pathway to the ciliary muscle. Exp Eye Res 28:277–284PubMedCrossRefGoogle Scholar
  131. Samuel U, Lütjen-Drecoll E, Tamm ER (1996) Gap junctions are found between iris sphincter smooth muscle cells but not in the ciliary muscle of human and monkey eyes. Exp Eye Res 63:187–192PubMedCrossRefGoogle Scholar
  132. Sanders KM, Ward SM (1992) Nitric oxide as a mediator of nonadrenergic noncholiner-gic neurotransmission. Am J Physiol 262:G379–G392PubMedGoogle Scholar
  133. Schmidt HHHW, Walter U (1994) NO at work. Cell 78:919–925PubMedCrossRefGoogle Scholar
  134. Schuman JS, Erickson K, Nathanson JA (1994) Nitrovasodilator effects on intraocular pressure and outflow facility in monkeys. Exp Eye Res 58:99–105PubMedCrossRefGoogle Scholar
  135. Sienkiewicz W, Kaleczyc J, Majewski M, Lakomy M (1995) NADPH-diaphorase-containing cerebrovascular nerve fibres and their possible origin in the pig. J Brain Res 36:353–363Google Scholar
  136. Stjernschantz J, Bill A (1979) Effect of intracranial stimulation of the oculomotor nerve on ocular blood flow in the monkey, cat and rabbit. Invest Ophthalmol Vis Sci 18:99–103PubMedGoogle Scholar
  137. Stjernschantz J, Bill A (1980) Vasomotor effects of facial nerve stimulation: noncholiner-gic vasodilation in the eye. Acta Physiol Scand 109:45–50PubMedCrossRefGoogle Scholar
  138. Stöhr P (1957) Handbuch der mikroskopischen Anatomic V Mikroskopische Anatomie des vegetativen Nervensystems. Springer, Berlin HeidelbergGoogle Scholar
  139. Stone RA, Kuwayama Y, Laties AM (1987) Regulatory peptides in the eye. Experientia 43:791–800PubMedCrossRefGoogle Scholar
  140. Su E-N, Alder VA, Yu D-Y, Cringle SJ (1994) Adrenergic and nitrergic neurotransmitters are released by the autonomic system of the pig long posterior ciliary artery. Curr Eye Res 13:907–917PubMedCrossRefGoogle Scholar
  141. Sun W, Erichsen JT, May PJ (1994) NADPH-diaphorase reactivity in ciliary ganglion neurons: a comparison of distributions in the pigeon, cat, and monkey. Vis Neurosci 11:1027–1031PubMedCrossRefGoogle Scholar
  142. Suzuki N, Fukuuchi Y, Koto A, Naganuma Y, Isozumi K, Matsuoka S, Gotoh J, Shimizu T (1993) Cerebrovascular NADPH diaphorase-containing nerve fibers in the rat. Neurosci Lett 151:1–3PubMedCrossRefGoogle Scholar
  143. Szmydynger-Chodobska J, Monfils PR, Lin AY-J, Rahman MP, Johanson CE, Chodobski A (1996) NADPH-diaphorase histochemistry of rat choroid plexus blood vessels and epithelium. Neurosci Lett 208:179–182PubMedCrossRefGoogle Scholar
  144. Talmage EK, Mawe GM (1993) NADPH-diaphorase and VIP are colocalized in neurons of gallbladder ganglia. J Auton Nerv Syst 43:83–90PubMedCrossRefGoogle Scholar
  145. Tamm E, Flügel C, Baur A, Lütjen-Drecoll E (1991a) Cell cultures of human ciliary muscle: growth, ultrastructural and immunocytochemical characteristics. Exp Eye Res 53:375–387PubMedCrossRefGoogle Scholar
  146. Tamm E, Lütjen-Drecoll E, Jungkunz W, Rohen JW (1991b) Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci 32:1678–1692PubMedGoogle Scholar
  147. Tamm E, Flügel C, Stefani FH, Rohen JW (1992) Contractile cells in the human scleral spur. Exp Eye Res 54:531–543PubMedCrossRefGoogle Scholar
  148. Tamm ER, Lütjen-Drecoll E (1997) Nitrergic nerve cells in the primate ciliary muscle are only present in species with a fovea centralis. Ophthalmologica 211:201–204PubMedCrossRefGoogle Scholar
  149. Tamm ER, Lütjen-Drecoll E (1996a) Functional morphology and origin of nitrergic nerves in the human eye. Exp Eye Res 63(Suppl):S.151CrossRefGoogle Scholar
  150. Tamm ER, Lütjen-Drecoll E (1996b) Ciliary body. Microsc Res Tech 33:390–439PubMedCrossRefGoogle Scholar
  151. Tamm ER, Flügel-Koch C, Mayer B, Lütjen-Drecoll E (1995a) Nerve cells in the human ciliary muscle: ultrastructural and immunocytochemical characterization. Invest Ophthalmol Vis Sci 36:414–426PubMedGoogle Scholar
  152. Tamm ER, Koch TA, Mayer B, Stefani FH, Lütjen-Drecoll E (1995b) Innervation of myofibroblast-like scleral spur cells in human and monkey eyes. Invest Ophthalmol Vis Sci 36:1633–1644PubMedGoogle Scholar
  153. Tiffany JM (1995) Physiological functions of the meibomian glands. In: Osborne NN, Chader G (eds) Progress in retinal and eye research. Elsevier Science, Amsterdam, pp 47–74Google Scholar
  154. Toda N (1995) Nitroxidergic nerves and hypertension. Hypertens Res 18:19–26PubMedCrossRefGoogle Scholar
  155. Toda N, Ayajiki K, Yoshida K, Kimura H, Okamura T (1993) Impairment by damage of the pterygopalatine ganglion of nitroxidergic vasodilator nerve function in canine cerebral and retinal arteries. Circ Res 72:206–213PubMedGoogle Scholar
  156. Toda N, Kitamura Y, Okamura T (1994) Role of nitroxidergic nerve in dog retinal arterioles in vivo and arteries in vitro. Am J Pathol 266:H1985–H1992Google Scholar
  157. Toda N, Toda M, Ayajiki K, Okamura T (1996) Monkey central retinal artery is innervated by nitroxidergic vasodilator nerves. Invest Ophthalmol Vis Sci 37: 2177–2184PubMedGoogle Scholar
  158. Toris CB, Pederson JE (1987) Aqueous humor dynamics in experimental iridocyclitis. Invest Ophthalmol Vis Sci 28:477–481PubMedGoogle Scholar
  159. Törnquist P, Alm A (1979) Retinal and choroidal contribution to retinal metabolism in vivo: a study in pigs. Acta Physiol Scand 106:351–357PubMedCrossRefGoogle Scholar
  160. Törnqvist G (1966) Effect of cervical sympathetic stimulation on accommodation in monkeys: an example of a beta-adrenergic, inhibitory effect. Acta Physiol Scand 67:363–372PubMedCrossRefGoogle Scholar
  161. Törnqvist G (1967a) The relative importance of the parasympathetic and sympathetic nervous system for accommodation in monkeys. Invest Ophthalmol Vis Sci 6:612–617Google Scholar
  162. Törnqvist G (1967b) Accommodation in monkeys: some pharmacological and physiological aspects. Acta Ophthalmol (Copenh) 45:1–32Google Scholar
  163. Tracey WR, Nakane M, Pollock JS, Förstermann U (1993) Nitric oxide synthases in neuronal cells, macrophages and endothelium are NADPH diaphorases, but represent only a fraction of total cellular NADPH diaphorase activity. Biochem Biophys Res Commun 195:1035–1040PubMedCrossRefGoogle Scholar
  164. Tripathi RC, Tripathi BJ (1984) Anatomy of the human eye, orbit, and adnexa. In: Davson H (ed) The eye. Vol 1a: Vegetative physiology and biochemistry. Academic, San Diego, pp 1–268Google Scholar
  165. Uddman R, Alumets J, Ehinger B, Hakanson R, Loren I, Sundler F (1980) Vasoactive intestinal peptide nerves in ocular and orbital structures of the cat. Invest Ophthalmol Vis Sci 19:878–885PubMedGoogle Scholar
  166. Ueno M, Naumann GOH (1989) Uveal damage in secondary glaucoma. Graefes Arch Clin Exp Ophthalmol 227:380–383PubMedCrossRefGoogle Scholar
  167. Unger WG (1989) Mediation of the ocular response to injury and irritation: peptides versus prostaglandins. In: Bito LZ, Stjernschantz J (eds) The ocular effects of prostaglandins and other eicosanoids: proceedings in clinical and biological research. Vol 312. Liss, New York, pp 293–328Google Scholar
  168. Van Alphen GWHM, Robinette SL, Macri FJ (1962) Drug effects on ciliary muscle and choroid preparations in vitro. Arch Ophthalmol 68:81–93Google Scholar
  169. Van der Werf F (1993) Innervation of the lacrimal gland in the cynomolgus monkey: a retrograde tracing and immunohistochemical study. In: van der Werf F (ed) Autonomic and sensory innervation of some orbital structures in the primate. Thesis, Universiteit van Amsterdam, Amsterdam, pp 51–70Google Scholar
  170. Van der Zypen E (1967) Licht-und elektronenmikroskopische Untersuchungen über den Bau und die Innervation des Ziliarmuskels bei Mensch und Affe (Cercopithecus ethiops). Graefes Arch Klin Exp Ophthalmol 174:143–168CrossRefGoogle Scholar
  171. Wang I, Kondo M, Bill A (1995) Vascular responses to flickering light in the retina in cats and monkeys: effect of L-NAME. Acta Physiol Scand 153:39AGoogle Scholar
  172. Wang ZY, Alm P, Hakanson R (1995) Distribution and effects of pituitary adenylate cyclase activating polypeptide in the rabbit eye. Neuroscience 69:297–308PubMedCrossRefGoogle Scholar
  173. Warwick R (1954) The ocular parasympathetic nerve supply and its mesencephalic sources. J Anat 88:195–203Google Scholar
  174. Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38000 characteristic of presynaptic vesicles. Cell 41:1017–1028PubMedCrossRefGoogle Scholar
  175. Wiederholt M, Sturm A, Lepple-Wienhues A (1994) Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide. Invest Ophthalmol Vis Sci 35:2515–2520PubMedGoogle Scholar
  176. Wiederholt M, Bielka S, Schweig F, Lütjen-Drecoll E, Lepple-Wienhues A (1996) Regulation of outflow rate and resistance in the perfused anterior segment of the bovine eye. Exp Eye Res 61:223–234CrossRefGoogle Scholar
  177. Wiencke AK, Nilsson H, Nielsen PJ, Nyborg NCB (1994) Nonadrenergic noncholinergic vasodilation in bovine ciliary artery involves CGRP and neurogenic nitric oxide. Invest Ophthalmol Vis Sci 35:3268–3277PubMedGoogle Scholar
  178. Wilcox LM, Keough EM, Connolly RJ, Hote CE (1980) The contribution of blood flow by the anterior ciliary arteries to the anterior segment in the primate eye. Exp Eye Res 30:167–174PubMedCrossRefGoogle Scholar
  179. Wilkinson KD, Lee K, Deshapande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673PubMedCrossRefGoogle Scholar
  180. Wizemann A, Wizemann V (1980) Untersuchungen zur ambulanten und perioperativen Augendrucksenkung mit organischen Nitraten. Klin Monatsbl Augenheilkd 177:292–295PubMedCrossRefGoogle Scholar
  181. Yamamoto R, Bredt DS, Snyder SH, Stone RA (1993) The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience 54:189–200PubMedCrossRefGoogle Scholar
  182. Ye X, Laties AM, Stone RA (1990) Peptidergic innervation of the retinal vasculature and the optic nerve head. Invest Ophthalmol Vis Sci 31:1731–1737PubMedGoogle Scholar
  183. Yoshida K, Okamura T, Kimura H, Bredt DS, Snyder SH, Toda N (1993) Nitric oxide syn-thase-immunoreactive nerve fibers in dog cerebral and peripheral arteries. Brain Res 629:67–72PubMedCrossRefGoogle Scholar
  184. Yoshida K, Okamura T, Toda N (1994) Histological and functional studies on the nitrox-idergic nerve innervating monkey cerebral, mesenteric and temporal arteries. Jpn J Pharmacol 65:351–359PubMedCrossRefGoogle Scholar
  185. Zagvazdin YS, Fitzgerald MEC, Sancesario G, Reiner A (1996) Neural nitric oxide mediates Edinger-Westphal nucleus evoked increase in choroidal blood flow in the pigeon. Invest Ophthalmol Vis Sci 37:666–672PubMedGoogle Scholar
  186. Zhang YL, Tan CK, Wong WC (1994a) Localisation of substance P-like immunoreactiv-ity in the ciliary ganglia of monkey (Macaca fascicularis)and cat: a light-and electron-microscopic study. Cell Tissue Res 276:163–171PubMedCrossRefGoogle Scholar
  187. Zhang YL, Tan CK, Wong WC (1994b) The ciliary ganglion of the monkey: a light and electron microscope study. J Anat 184:251–260PubMedGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2000

Authors and Affiliations

  • Ernst R. Tamm
    • 1
  • Elke Lütjen-Drecoll
    • 1
  1. 1.Department of AnatomyUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations