Contractility of Trabecular Meshwork and Ciliary Muscle: Modulation by the NO/cGMP System

  • Michael Wiederholt
  • Friederike Stumpff
  • Natalie Dürschner


Data indicate that nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) can function as an intracellular signal transduction system. If specific cells contain both nitric oxide synthase (NOS) and guanylate cyclase activated by NO, intracellular cGMP can be regulated by substances that alter NOS activity and NO formation (Moncada et al. 1991; Moncada 1992; Nathan 1992).


Nitric Oxide Trabecular Meshwork Contractile Property Nonselective Cation Channel Isosorbide Dinitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer SL, Huang JMC, Hampl V, Nelson DP, Shultz PJ, Weir EK (1994) Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 91:7583–7587PubMedCrossRefGoogle Scholar
  2. Becker B (1990) Topical 8-bromo-cyclic GMP lowers intraocular pressure in rabbits. Invest Ophthalmol Vis Sci 31:1647–1649PubMedGoogle Scholar
  3. Behar-Cohen FF, Goureau O, D’Hermies F, Courtois Y (1996) Decreased intraocular pressure induced by nitric oxide donors is correlated to nitrite production in the rabbit eye. Invest Ophthalmol Vis Sci 37:1711–1715PubMedGoogle Scholar
  4. Benham CD, Bolten TB, Lang RJ (1985) Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature 316:345–347PubMedCrossRefGoogle Scholar
  5. Berweck S, Lepple-Wienhues A, Stöss M, Wiederholt M (1994) Large conductance calcium-activated potassium channels in cultured retinal pericytes under normal and high-glucose conditions. Pflugers Arch 427:9–16PubMedCrossRefGoogle Scholar
  6. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368:850–853PubMedCrossRefGoogle Scholar
  7. Busch MJWM, van Oosterhout JGM, Hoyng PFJ (1992) Effects of cyclic nucleotide analogs on intraocular pressure and trauma-induced inflammation in the rabbit eye. Curr Eye Res 1:5–13CrossRefGoogle Scholar
  8. Coroneo MT, Korbmacher C, Stiemer B, Flügel C, Lütjen-Drecoll E, Wiederholt M (1991) Electrical and morphological evidence for heterogeneous populations of cultured bovine trabecular meshwork cells. Exp Eye Res 52:375–388PubMedCrossRefGoogle Scholar
  9. Geyer O, Podos SM, Mittag TW (1993) Nitric oxide synthase: distribution and biochemical properties of the enzyme in the bovine eye. Invest Ophthalmol Vis Sci 34:826Google Scholar
  10. Gögelein H, Dahlem D, Englert HC, Lang HJ (1990) Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett 268:79–82PubMedCrossRefGoogle Scholar
  11. Hamill OP, Marty A, Neher E, Sakman B, Sigworth FJ (1991) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981:85–100Google Scholar
  12. Isenberg G (1993) Nonselective cation channels in cardiac and smooth muscle cells. In: Siemen D, Hescheler J (eds) Nonselective cation channels: pharmacology, physiology and biophysics. Birkhäuser Verlag, Basel, pp 247–260Google Scholar
  13. Lepple-Wienhues A, Stahl F, Wiederholt M (1991a) Differential smooth muscle-like contractile properties of trabecular meshwork and ciliary muscle. Exp Eye Res 53:33–38PubMedCrossRefGoogle Scholar
  14. Lepple-Wienhues A, Stahl F, Willner U, Schäfer R, Wiederholt M (1991b) Endothelin-evoked contractions in bovine ciliary muscle and trabecular meshwork: interactions with calcium, nifedipine and nickel. Curr Eye Res 10:983–989PubMedCrossRefGoogle Scholar
  15. Lepple-Wienhues A, Stahl F, Wunderling D, Wiederholt M (1992) Effects of endothelin and calcium channel blockers on membrane voltage and intracellular calcium in cultured bovine trabecular meshwork. German J Ophthalmol 1:159–163Google Scholar
  16. Lepple-Wienhues A, Rauch R, Clark AF, Grässmann A, Berweck S, Wiederholt M (1994) Electrophysiological properties of cultured human trabecular meshwork cells. Exp Eye Res 59:305–311PubMedCrossRefGoogle Scholar
  17. Moncada S (1992) The L-arginine: nitric oxide pathway. Acta Physiol Scand 145:201–227PubMedCrossRefGoogle Scholar
  18. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  19. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064PubMedGoogle Scholar
  20. Nathanson JA, McKee M (1995a) Identification of an extensive system of nitric oxide-producing cells in the ciliary muscle and outflow pathway of the human eye. Invest Ophthalmol Vis Sci 36:1765–1773PubMedGoogle Scholar
  21. Nathanson JA, McKee M (1995b) Alterations of ocular nitric oxide synthase in human glaucoma. Invest Ophthalmol Vis Sci 36:1774–1784PubMedGoogle Scholar
  22. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822PubMedGoogle Scholar
  23. Pang IH, Shade DL, Clark AF, Steely HT, DeSantis L (1994) Preliminary characterization of a transformed cell strain derived from human trabecular meshwork. Curr Eye Res 13:51–63PubMedCrossRefGoogle Scholar
  24. Schuman JS, Erickson K, Nathanson JA (1994) Nitrovasodilator effects on intraocular pressure and outflow facility in monkeys. Exp Eye Res 58:99–105PubMedCrossRefGoogle Scholar
  25. Stein PJ, Clack JW (1994) Topical application of a cyclic GMP analog lowers IOP in normal and ocular hypertensive rabbits. Invest Ophthalmol Vis Sci 35:2765–2768PubMedGoogle Scholar
  26. Stumpff F, Strauss O, Wagner U, Wiederholt M (1996) Cultured bovine trabecular meshwork cells possess maxi-K-channels in high density. Invest Ophthalmol Vis Sci 37:S205Google Scholar
  27. Stumpff F, Strauss O, Boxberger M, Wiederholt M (1997) Characterization of maxi-K-channels in trabecular meshwork and their activation by cGMP. Invest Ophthalmol Vis Sci 38:1883–1892PubMedGoogle Scholar
  28. Wiederholt M, Stumpff F (1997) The trabecular meshwork and aqueous humor reab-sorption. In: Civan MM (ed) Current topics in membranes, Vol 45. The eye’s aqueous humor: from secretion to glaucoma. Academic, San Diego, pp 163–202CrossRefGoogle Scholar
  29. Wiederholt M, Lepple-Wienhues A, Stahl F (1993) Contractile properties of trabecular meshwork and ciliary muscle. In: Lütjen-Drecoll E (ed) Basic aspects of glaucoma research III. Schattauer, Stuttgart, pp 287–306Google Scholar
  30. Wiederholt M, Sturm A, Lepple-Wienhues A (1994) Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide. Invest Ophthalmol Vis Sci 35: 2515–2520PubMedGoogle Scholar
  31. Wiederholt M, Bielka S, Schweig F, Lütjen-Drecoll E, Lepple-Wienhues A (1995) Regulation of outflow rate and resistance in the perfused anterior segment of the bovine eye. Exp Eye Res 61:223–234PubMedCrossRefGoogle Scholar
  32. Wiederholt M, Schäfer R, Wagner U, Lepple-Wienhues A (1996) Contractile response of the isolated trabecular meshwork and ciliary muscle to cholinergic and adrenergic agents. German J Ophthalmol 5:146–153Google Scholar
  33. Wiederholt M, Dörschner N, Groth J (1997) Effect of diuretics, channel modulators, and signal interceptors on contractility of the trabecular meshwork. Ophthalmologica 211:153–160PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2000

Authors and Affiliations

  • Michael Wiederholt
    • 1
  • Friederike Stumpff
    • 1
  • Natalie Dürschner
    • 1
  1. 1.Institut für Klinische PhysiologieUniversitätsklinikum Benjamin Franklin, Freie Universität BerlinBerlinGermany

Personalised recommendations