Skip to main content
  • 296 Accesses

Abstract

The strength of the local electromagnetic interaction between a specimen and a probe increases with increases in the optical near-field intensity. This increase allows modifications to the specimen’s surface and also nanometric processing, which leads to the creation of novel nanometric materials. Further, novel functional photonic devices are expected from the use of a resonant interaction between the optical near field and the matter, as well as using the local optical nonlinear effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Grating (Springer-Verlag, Berlin, 1988)

    Google Scholar 

  2. V. M. Agranovich, D. L. Mills (eds.), Surface Polaritons (North-Holland, Amsterdam, 1982)

    Google Scholar 

  3. H. Knobloch, G. von S.-Borryszkowski, S. Woigk, A. Helms, L. Brehmer, Appl. Phys. Lett. 69, 2336 (1996)

    Article  ADS  Google Scholar 

  4. I.I. Smolyaninov, D. L. Mazzoni, C. C. Davis, Phys. Rev. Lett. 77, 3877 (1996)

    Article  ADS  Google Scholar 

  5. G. B. Sigal, M. Mrksich, G. M. Whitesides, Langmuir 13, 2749 (1997)

    Article  Google Scholar 

  6. M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992)

    Article  ADS  Google Scholar 

  7. P. Dawson, F. de Fornel, J-P. Goudonnet, Phys. Rev. Lett. 72, 2927 (1994)

    Article  ADS  Google Scholar 

  8. O. A. Aktsipetrov, V. N. Golovkina, O. I. Kapusta, T. A. Leskova, N. N. Novikova, Phys. Lett. A 170, 231 (1992)

    Article  ADS  Google Scholar 

  9. S. I. Bozhevolnyi, Phys. Rev. B 54, 8177 (1996)

    Article  ADS  Google Scholar 

  10. S. I. Bozhevolnyi, I.I. Smolyaninov, A. V. Zayats, Phys. Rev. B 51, 17916 (1996)

    Article  ADS  Google Scholar 

  11. S. I. Bozhevolnyi, K. Pedersen, Surf. Sci. 377/379, 384 (1997)

    Article  Google Scholar 

  12. S. I. Bozhevolnyi, D. L. Mazzoni, J. Mait, C. C. Davis, Phys. Rev. B 56, 1601 (1997)

    Article  ADS  Google Scholar 

  13. J. R. Krenn, R. Wolf, A. Leitner, F. R. Aussenegg, Opt. Commun. 137, 46 (1997)

    Article  ADS  Google Scholar 

  14. F. Zenhausern, Y. Martin, H. K. Wickramasinghe, Science 269, 1083 (1995)

    Article  ADS  Google Scholar 

  15. S. Mononobe, M. Naya, T. Saiki, M. Ohtsu, Appl. Opt. 36, 1496 (1997)

    Article  ADS  Google Scholar 

  16. W. Jhe, K. Jang, Ultramicroscopy 61, 81 (1995)

    Article  Google Scholar 

  17. P. J. Kajenski, Opt. Eng. 36, 263 (1997)

    Article  ADS  Google Scholar 

  18. J. A. Sánchez-Gill, A. A. Maradudin, Phy. Rev. B 56, 1103 (1997)

    Article  ADS  Google Scholar 

  19. R. K. Chang, T. E. Furtak (eds.), Surface Enhanced Raman Scattering (Plenum, New York, 1982)

    Google Scholar 

  20. I. Baltog, N. Primeau, R. Reinisch, J. Opt. Soc. Am. B 13, 656 (1996)

    Article  ADS  Google Scholar 

  21. A. Wokaun, J. P. Gordon, P. F. Liao, Phys. Rev. Lett. 48, 957 (1982)

    Article  ADS  Google Scholar 

  22. M. Ashino, M. Ohtsu, Appl. Phys. Lett. 72, 1299 (1998)

    Article  ADS  Google Scholar 

  23. G. T. Boyd, Th. Raising, J. R. R. Leite, Y. R. Shen, Phys. Rev. B 30, 519 (1984)

    Article  ADS  Google Scholar 

  24. S. M. Mansfield, G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990)

    Article  ADS  Google Scholar 

  25. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).

    Article  ADS  Google Scholar 

  26. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, Appl. Phys. Lett. 61, 142 (1992)

    Article  ADS  Google Scholar 

  27. S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, Opt. Commun. 106, 173 (1994)

    Article  ADS  Google Scholar 

  28. S. Hosaka, T. Shintani, M. Miyamoto, A. Kikukawa, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Krammer, J. Appl. Phys. 79, 8082 (1996)

    Article  ADS  Google Scholar 

  29. M. Hamano, M. Irie, Jpn. J. Appl. Phys. 35, 1764 (1996)

    Article  ADS  Google Scholar 

  30. M. Ohtsu, in Technical digest, Joint international symposium on magnetooptical recording and optical memory, Yamagata, Japan, October 1997, pp. 180–181

    Google Scholar 

  31. K. Goto, in Technical digest, Joint international symposium on magnetooptical recording and optical memory, Yamagata, Japan, October 1997, pp. 184–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Japan

About this chapter

Cite this chapter

Ohtsu, M. (1998). Toward Nano-Photonic Devices. In: Ohtsu, M. (eds) Near-field Nano/Atom Optics and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67937-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67937-0_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68013-0

  • Online ISBN: 978-4-431-67937-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics