Skip to main content

Roles of Sinusoidal Endothelial Cells in the Local Regulation of Hepatic Sinusoidal Blood Flow—Involvement of Endothelins and Nitric Oxide

  • Conference paper
Liver Diseases and Hepatic Sinusoidal Cells

Summary

This chapter reviews current understanding of the regulation of hepatic microcirculation, with particular reference to the authors’ own work on the roles of sinusoidal endothelial cells and the mechanism of dynamic changes in the sinusoidal endothelial fenestrae (SEF) induced by the potent vasoconstrictor endothelin (ET)-l. From the viewpoint of myogenic control in microcirculation, it is considered essential for the local control of hepatic sinusoidal blood flow that the dynamic contracting and relaxing changes of the SEF correspond with those of Ito cells (hepatic stallate cells, HSCs), both of which are mediated by the sinusoidal endothelium-derived vasoconstrictor endothelins (ETs) and the vasodilator nitric oxide (NO). The contractility of the SEF and HSCs entirely depends on the intracellular Ca2+-calmodulin-actomyosin system, in which plasma membrane Ca2+-pump ATPase controlling the intracytoplasmic free calcium concentration [Ca2+]; is one of the key modulators.

ET-1 produced and released from the sinusoidal endothelial cells acts on the HSCs via the ETA receptors as a paracrine effect, inducing a contraction of the HSCs. ET-1 also acts on the sinusoidal endothelial cells themselves via the ETB receptors as an autocrine effect, inducing a contraction of the SEF with a prompt elevation of [Ca2+]j enhanced by a decrease in fenestral plasma membrane Ca2+-pump ATPase. This elevation of [Ca2+]i is markedly suppressed by pretreatment with an ETB receptor antagonist. In parallel with this process, NO produced by NO synthase (NOS) within the sinusoidal endothelial cells gets into the HSCs, inducing a relaxation of the HSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rappaport AM (1973) The microcirculatory hepatic unit. Microvasc Res 6:212–228

    Article  PubMed  CAS  Google Scholar 

  2. Wisse E (1970) An electron microscopic study of fenestrated endothelium lining of rat liver sinusoids. J Ultrastruct Res 31:125–150

    Article  PubMed  CAS  Google Scholar 

  3. Oda M, Nakamura M, Watanabe N, et al. (1983) Some dynamic aspects of the hepatic microcirculation: Demonstration of sinusoidal endothelial fenestrae as a possible regulatory factor. In: Tsuchiya M, Wayland H, Oda M, et al. (eds) Intravital observation of organ microcirculation. Excerpta Medica, Amsterdam, pp 105–138

    Google Scholar 

  4. Oda M, Azuma T, Watanabe N, et al. (1990) Regulatory mechanisms of the hepatic microcirculation. Involvement of the contraction and dilatation of sinusoids and sinusoidal endothelial fenestrae. Prog Appl Microcirc 17:103–128

    Google Scholar 

  5. Yanagisawa M, Kurihara H, Kimura S, et al. (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  PubMed  CAS  Google Scholar 

  6. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  7. Yanagisawa M (1994) The endothelin system. A new target for therapeutic intervention. Circulation 89:1320–1322

    PubMed  CAS  Google Scholar 

  8. Lautt WW, Greenway CV (1987) Conceptual review of the hepatic vascular bed. Hepatology 7:952–963

    Article  PubMed  CAS  Google Scholar 

  9. Nakata K, Leong GF, Brauer RW (1961) Direct measurement of blood pressures in minute vessels of the liver. Am J Physiol 199:1181–1188

    Google Scholar 

  10. Hanson KM, Johnson PC (1966) Local control of hepatic arterial and portal venous flow in the dog. Am J Physiol 211:712–720

    PubMed  CAS  Google Scholar 

  11. McCuskey RS (1966) A dynamic and static study of hepatic arterioles and hepatic sphincters. Am J Anat 119:455–478

    Article  PubMed  CAS  Google Scholar 

  12. Rhodin JAG (1967) The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18:181–223

    Article  PubMed  CAS  Google Scholar 

  13. Ito T (1987) Participation of Ito cells in sinusoidal blood flow. In: Tsuchiya M, Asano M, Mishima Y, et al. (eds) Microcirculation—an update, vol 2. Excerpta Medica, Amsterdam, pp 321–324

    Google Scholar 

  14. McCuskey RS (1986) Hepatic microvascular dysfunction during sepsis and endotoxemia. In: Tsuchiya M, Kawai K, Kitajima M, et al. (eds) Cytoprotection and cytobiology. vol 3. Excerpta Medica, Amsterdam, pp 3–17

    Google Scholar 

  15. Oda M, Nishida J, Honda K, et al. (1991) Relation between sinusoidal endothelial cells and Kupffer cells in hepatic defence mechanisms. In: Tsuchiya M, Nagura H, Hibi T, et al. (eds) Frontiers of mucosal immunology. vol. 2. Excerpta Medica, Amsterdam, pp 193–196

    Google Scholar 

  16. Oda M, Kaneko H, Suematsu M, et al. (1993) A new aspect of the hepatic microvasculature: Electron microscopic evidence for the presence of Ito cells around portal and hepatic venules as pericytes. Prog Appl Microcirc 19:25–39

    Google Scholar 

  17. Suematsu M, Oda M, Suzuki H, et al. (1993) Intravital and electron microscopic observation of Ito cells in the rat hepatic microcirculation. Microvas Res 46:28–42

    Article  CAS  Google Scholar 

  18. Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histaminetype mediators. J Cell Biol 41:657–672

    Article  Google Scholar 

  19. Rappaport AM, Schneiderman JH (1976) The function of the hepatic artery. Rev Physiol Biochem Pharmacol 76:129–175

    Article  PubMed  CAS  Google Scholar 

  20. Kardon RH, Kessel RG (1980) Three-dimensional organization of the hepatic microcirculation in the rodent as observed by scanning electron microscopy of corrosion casts. Gastroenterology 79:72–81

    PubMed  CAS  Google Scholar 

  21. Kazemoto S, Oda M, Kaneko H, et al. (1992) Enzymohistochemical demonstration of arterial capillaries in rat liver. Microcirc Annual 8:109–110

    Google Scholar 

  22. Oda M, Kazemoto S, Kaneko H, et al. (1993) Involvement of Ca2+-calmodulinactomyosin system in contractility of hepatic sinusoidal endothelial fenestrae. In: Knook DL, Wisse E (eds) Cells of the hepatic sinusoid. vol 4. Kupffer Cell Foundation, Leiden, pp 174–178

    Google Scholar 

  23. Oda M, Kamegaya Y, Yokomori H, et al. (1997) Roles of plasma membrane Ca2+-ATPase in the relaxation and contraction of hepatic sinusoidal endothelial fenestrae-effects of prostaglandin E1 and endothelin 1. In: Wisse E, Knook DL, Balabaud C (eds) Cells of the hepatic sinusoid. vol 6. Kupffer Cell Foundation, Leiden, pp 313–317

    Google Scholar 

  24. Gatmaitan Z, Varticovski L, Ling L, et al. (1996) Studies on fenestral contraction in rat liver endothelial cells in culture. Am J Pathol 148:2027–2041

    PubMed  CAS  Google Scholar 

  25. Oda M, Tsukada N, Komatsu H, et al. (1986) Electron microscopic localization of actin, calmodulin and calcium in the hepatic sinusoidal endothelium in the rat. In: Kirn A, Knook DL, Wisse E (eds) Cells of the hepatic sinusoid. vol 1. Kupffer Cell Foundation, Rijswijk, pp 511–512

    Google Scholar 

  26. Braef F, DeZanger R, Baekeland M, et al. (1995) Structure and dynamics of the fenestrae-associated cytoskeleton of rat liver sinusoidal endothelial cells. Hepatology 7:1230–1238

    Google Scholar 

  27. Wier WG, Cannell MB, Berlin JR, et al. (1987) Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura 2. Science 235:325–328

    Article  PubMed  CAS  Google Scholar 

  28. Oda M, Watanabe N, Komatsu H, et al. (1988) Electron microscopic demonstration of free calcium in the capillary endothelium in comparison with computerized image analysis using fura 2-AM. J Clin Electron Microsc 21:558–559

    Google Scholar 

  29. Braef F, DeZanger R, Jans D, et al. (1996) Microfilament-disrupting agent latrunculin A induces an increased number of fenestrae in rat liver sinusoidal endothelial cells: comparison with cytochalasin B. Hepatology 24:627–635

    Article  Google Scholar 

  30. Arias IM (1990) The biology of hepatic endothelial cell fenestrae. In: Popper H, Schaffner S (eds) Progress in liver diseases. vol 9. Grune and Stratton, New York, pp 11–26

    Google Scholar 

  31. Nishihama M, Nanaka T, Hidaka H (1980) Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature 287:883–885

    Google Scholar 

  32. Kelley C, D’Amore P, Hechtmann HB, et al. (1987) Microvascular pericyte contractility in vitro: Comparison with other cells of the vascular wall. J Cell Biol 104:483–490

    Article  PubMed  CAS  Google Scholar 

  33. Pinzani M, Faun P, Reocco U, et al. (1992) Fat storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest 90:642–646

    Article  PubMed  CAS  Google Scholar 

  34. Sakamoto M, Ueno T, Kin M, et al. (1993) Ito cell contraction in response to end-othelin-1 and substance P. Hepatology 18:978–983

    Article  PubMed  CAS  Google Scholar 

  35. Kawada N, Tran-Thi TA, Klein H, et al. (1993) The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem 213:815–823

    Article  PubMed  CAS  Google Scholar 

  36. Kamegaya Y, Oda M, Kazemoto S, et al. (1995) Evidence for the spontaneous contractility of Ito cells. Time-lapse cinematography and couputerized image analysis. In: Wisse E, Knook DL, Wake K (eds) Cells of the hepatic sinusoid. vol 5. Kupffer Cell Foundation, Leiden, pp 306–307

    Google Scholar 

  37. Kamegaya Y, Oda M, Yokomori H, et al. (1997) Effect of endothelin-1 on hepatic microcirculation—relation between the changes in hepatic sinusoidal endothelial fenestrae and intracytoplasmic free calcium ion. Microcirc Annual 13:163–164

    Google Scholar 

  38. Zhang JX, Pegoli WJ, Clemens MG (1994) Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol 266:G624–G632

    PubMed  CAS  Google Scholar 

  39. Okumura S, Takei Y, Kawano S, et al. (1994) Vasoactive effect of endothelin-1 on rat liver in vivo. Hepatology 19:155–161

    PubMed  CAS  Google Scholar 

  40. Rockey DC, Chung JJ (1995) Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest 95:1197–1206

    Article  Google Scholar 

  41. Suematsu M, Goda N, Sano T, et al. (1995) Carbon monoxide: An endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest 96:2431–2437

    Article  PubMed  CAS  Google Scholar 

  42. Rieder H, Ramadori G, Meyer zum Buschenfelde KH (1991) Sinusoidal endothelial liver cells in vitro release endothelin augmentation by transforming growth factor beta and Kupffer cell-conditioned media. Klin Wochenschr 69:387–391

    Article  PubMed  CAS  Google Scholar 

  43. Rockey DC, Chung JJ (1998) Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: Endothelial dysfunction in portal hypertension. Gastroenterology 114:344–351

    Article  PubMed  CAS  Google Scholar 

  44. Carafoli E (1991) Calcium pump of plasma membrane. Physiol Rev 71:129–153

    PubMed  CAS  Google Scholar 

  45. Fujimoto T (1993) Calcium pump of the plasma membrane is located in caveolae. J Cell Biol 120:1147–1157

    Article  PubMed  CAS  Google Scholar 

  46. Lin PH (1990) Liver plasma membrane ectoATPase. Ann NY Acad Sci 603:394–400

    Article  PubMed  CAS  Google Scholar 

  47. Verma AK, Filoteo AG, Stanford DK, et al. (1988) Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 263:14152–14159

    PubMed  CAS  Google Scholar 

  48. Sakurai T, Yanagisawa M, Masaki T (1992) Molecular characterization of endothelin receptors. Trends Pharmacol Sci 13:103–108

    Article  PubMed  CAS  Google Scholar 

  49. Housset C, Rockey DC, Bissell DM (1993) Endothelin receptors in rat liver lipocytes as a contractile target for endothelin 1. Proc Natl Acad Sci USA 90:9266–9270

    Article  PubMed  CAS  Google Scholar 

  50. Rangen DMS, Schmidt EE, MacDonald IC, et al. (1988) Spontaneous cyclic contractions of the capillary wall in vivo, impeding red cell flow—A quantitative analysis. Evidence for endothelial contractility. Microvasc Res 36:13–30

    Article  Google Scholar 

  51. Gondo K, Ueno T, Sakamoto M, et al. (1993) The endothelin-1 binding site in rat liver tissue: Light-and electron-microscopic, autoradiographic studies. Gastroenterology 104:1745–1749

    PubMed  CAS  Google Scholar 

  52. Rocky D (1997) The cellular pathogenesis of portal hypertension: Stellate cell contractility, endothelin, and nitric oxide. Hepatology 25:2–5

    Article  Google Scholar 

  53. Oda M, Azuma T, Nishizaki Y, et al. (1989) Alterations of hepatic sinusoids in liver cirrhosis—involvement in the pathogenesis of portal hypertension. J Gastroenterol Hepatol 4 (Suppl. 1):111–113

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Tokyo

About this paper

Cite this paper

Oda, M., Yokomori, H., Kamegaya, Y. (1999). Roles of Sinusoidal Endothelial Cells in the Local Regulation of Hepatic Sinusoidal Blood Flow—Involvement of Endothelins and Nitric Oxide. In: Tanikawa, K., Ueno, T. (eds) Liver Diseases and Hepatic Sinusoidal Cells. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67935-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67935-6_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68012-3

  • Online ISBN: 978-4-431-67935-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics