Skip to main content

Abstract

The insecticide world market, worth about 7 billion at the beginning of the 1990s, has long been dominated by old and well-established products belonging to the organophosphate, carbamate, and organochlorine classes and the newer class of pyrethroids. All these commercially important insecticides act at targets in the central nervous system and were responsible for more than 85% of worldwide insecticide sales. Inhibitors of the nicotinic acetylcholine receptor, the target of chloronicotinyl insecticides, were represented by earlier products like nicotine itself or nereistoxin analogs without any real commercial relevance at that time (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bedford ID, Pinner M, Liu S, Markham P G (1994) Bemisia tubaci-potential infestation, phototoxicity and virus transmission within European agriculture. Proceedings of the Brighton Crop Protection Conference-Pests and Diseases 7C-4, pp 911–916

    Google Scholar 

  • Canili M, Denholm I, Byrne F, Devonshire A L (1996a) Insecticide resistance in Bemisia tabaci-current status and implications for management. Proceedings of the Brighton Crop Protection Conference-Pests and Diseases 2B-3, pp 75–80

    Google Scholar 

  • Cahill M, Gorman K, Day S, Denholm I, Elbert A, Nauen R (1996b) Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86:343–349.

    Article  CAS  Google Scholar 

  • Devine GJ, Harling ZK, Scarr AW, Devonshire AL (1996) Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus rdcotianae and Myzus persicae. Pestic Sci 48:57–62

    Article  CAS  Google Scholar 

  • Diehr H-J, Gallenkamp B, Jelich K, Lantech R, Shiokawa K (1991) Synthesis and chemical properties of the insecticide imidacloprid (NTN 33893) PflanzNachr Bayer (Engl Ed) 44:107–112

    CAS  Google Scholar 

  • Drinkwater TW (1994) Comparison of imidaclopird with carbamate insecticides, and the role of planting depth in the control of false wireworms, Somaticus species, in maize. Crop Prot 13:341–345

    Article  CAS  Google Scholar 

  • Drinkwater TW, Groenewald LH (1994) Comparison of imidacloprid and furathiocarb seed dressing insecticides for the control of the black maize beetle, Heteronychus arator Fabricius (Coleoptera: Scarabaeidae), in maize. Crop Prot 13:421–424

    Article  CAS  Google Scholar 

  • Elbert A, Becker B, Hartwig J, Erdelen C (1991) Imidacloprid-a new systemic insecticide. PflanzNachr Bayer 44:113–136

    CAS  Google Scholar 

  • Elbert A, Nauen R, Canili M, Devonshire A, Scarr A, Sone S, Steffens R (1996) Resistance management for chloronicotinyl insecticides using imidacloprid as an example. PflanzNachr Bayer 49:5–54

    CAS  Google Scholar 

  • Elbert A, Nauen R (1996) Bioassays for imidacloprid for a resistance monitoring against the whitefly Bemisia tubaci. Proceedings Brighton Crop Prot Conf, Pests and Diseases 6D-8, pp 731–738

    Google Scholar 

  • Elbert A, Nauen R, Leicht W (1998) Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In: Ishaaya I, Degheele D (Eds) Insecticides with novel modes of action, mechanism and application. Spinger, Berlin Heidelberg New York, pp 50–73

    Google Scholar 

  • Eldefrawi ME, Eldefrawi AT (1997) Comparative molecular and pharmacological properties of cholinergic receptors in insects and mammals. ACS Symp Ser 658:327–338

    Article  CAS  Google Scholar 

  • Hornberg U (1994) Distribution of neurotransmitters in the insect brain. Gustav Fischer, Stuttgart Jena New York, pp 47–49

    Google Scholar 

  • Kagabu S (1996) Studies on the synthesis and insecticidal activity of neonicotinoid compounds. Pestic Sci 21:231–239

    Article  CAS  Google Scholar 

  • Liu MY, Casida JE (1993) High affinity binding of [3H]imidacloprid in the insect acetylcholine receptor. Pestic Biochem Physiol 46:40–46

    Article  CAS  Google Scholar 

  • Lösel PM, Goodman LJ (1993) Effects on the feeding behaviour of Nilaparvata lugens (Stål) of sublethal concentrations of the foliarly applied nitromethylene heterocycle 2-nitromethylene-l,3-thiazinan-3-yl-carbamaldehyde. Physiol Entomol 18:67–74

    Article  Google Scholar 

  • Mansour NA, Pessah IN, Eldefrawi AT (1980) Binding of [125I]α-bungarotoxin and reversible cholinergic ligands to proteins in housefly brains. In: Insect neurobiological pesticide action. Society of Chemical Industry, London, pp 201–207

    Google Scholar 

  • McLane KE, Dunn SJM, Manfredi AA, Conti-Tronconi BM, Raftery MA (1996) The nicotinic acetylcholine receptor as a model for a superfamily of ligand-gated ion channel proteins. In: Carey PR (Ed), Protein engineerung Des, Academic Press, San Diego, pp 289–352

    Google Scholar 

  • Methfessel C (1992) Action of imidacloprid on the nicotinergic acetylcholine receptors in rat muscle. PflanzNachr Bayer (Germ. Ed), 45:369–380

    Google Scholar 

  • Moriya K, Shibuya K, Hattori Y, Tsuboi S, Shiokawa K, Kagabu S (1992) l-(6-Chloronicotinyl)-2-nitroimino-imidazolidines and related compounds as potential new insecticides. Biosci Biotechnol Biochem 56:364–365

    Article  CAS  Google Scholar 

  • Nauen R (1995) Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to antifeeding response. Pestic Sci 44:145–153

    Article  CAS  Google Scholar 

  • Nauen R, Strobel J, Otsu K, Tietjen K, Erdelen C, Elbert A (1996) aphicidal activity of imidacloprid against a carbamate and organophosphate resistant Japanese strain of the tobacco feeding form of Myzus persicae (Homptera: Aphididae) closely related to Myzus nicotianae. Bull Entomol Res 86:165–171

    Article  CAS  Google Scholar 

  • Nauen R, Elbert A (1997) Apparent tolerance of a field-collected strain of Myzus nicotianae to imidacloprid due to strong antifeeding response. Pestic Sci 49:252–258

    Article  CAS  Google Scholar 

  • Nauen R, Hungenberg H, Tollo B, Tietjen K, Elbert A (1998) Antifeedant effect, biological efficacy and high affinity binding of imidacloprid to acetylcholine receptors in tobacco-associateci Myzus persicae (Sulzer) and Myzus nicotianae Blackman (Homoptera: Aphididae). Pestic Sci 53:133–140

    Article  CAS  Google Scholar 

  • Nauen R, Koob B, Klüver T, Elbert A (1997) Biochemical characterization of insecticide resistant strains of the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). MittDtschGes Allgemeine Angewandte Entomol 11:217–221

    Google Scholar 

  • Nauen R, Koob B, Elbert A (in press) Behavioural effects of sublethal concentrations of imidacloprid to Bemisia tabaci (Homoptera: Aleyrodidae). Entomol Exp Appl

    Google Scholar 

  • Olson ER, Dively GP, Nelson JO (1996) Survey of susceptibility to imidacloprid (Admire) in Colorado potato beetle (Coleoptera: Chrysomelidae). Resis Pest Manage 8:39–41

    Google Scholar 

  • Perring TM, Cooper AD, Rodriguez RJ, Farrar CA, Bellows TS Jr (1993) Identification of a whitefly species by genomic and behavioural studies. Science (Washington DC) 259:74–77.

    Article  PubMed  CAS  Google Scholar 

  • Pflüger W, Schmuck R (1991) Ecotoxicological profile of imidacloprid. PflanzNachr Bayer 44:145–158

    Google Scholar 

  • Salgado VL, Watson GB, Sheets J J (1997) Studies on the mode of action of spinosad, the active ingredient in tracer insect control. Proceedings Beltwide Cotton Conferences (Vol 2). National Cotton Council, Memphis, pp 1082–1084

    Google Scholar 

  • Sattelle DB, David JA, Harrow ID, Hue B (1980) Actions of α-bungarotoxin on identified insect central neurones. In: Sattelle DB, Hall LM, Hildebrand JG (Eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam, pp 125–139

    Google Scholar 

  • Schroeder ME, Flattum RF (1984) The mode of action of neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic Biochem Physiol 22:148–160

    Article  CAS  Google Scholar 

  • Tomizawa M, Latli B, Casida JE (1996) Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors. J Neurochem 67:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Tsigelny I, Sugiyama N, Sine SM, Taylor P (1997) A model of the nicotinic receptor extracellular domain based on sequence identity and residue location. Biophys J 73:52–66

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this chapter

Cite this chapter

Wollweber, D., Tietjen, K. (1999). Chloronicotinyl Insecticides: A Success of the New Chemistry. In: Yamamoto, I., Casida, J.E. (eds) Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67933-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67933-2_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68011-6

  • Online ISBN: 978-4-431-67933-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics