Alkaloids, with more than 10,000 described, are one of the most diverse and prominent groups of natural products with pharmacological and toxicological importance (Harborne 1993). Plant extracts containing insecticidal alkaloids as bioactive constituents have played an important role in the abatement of insects of agricultural and public health importance for centuries. While the direct use of these substances has recently diminished, they continue to serve as leads for synthetic analogs and are also indispensable biochemical tools in mode of action studies. In recent years, the function of these alkaloids in the host plant has begun to unfold: it is now generally believed that the ecological role of these compounds, often acting in concert with other nonalkaloidal substances, is to provide a chemical defense against predators and pathogens in a sustained manner through multiple biological mechanisms (Wink 1993a; Brown and Trigo 1995).


Insecticidal Activity Indole Alkaloid Defensive Secretion Tripterygium Wilfordii Steroid Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addor RW (1995) Insecticides. In: Godfrey CRA (Ed) Agrochemicals from natural products. Marcel Dekker, New York, pp 1–62Google Scholar
  2. Addor RW, Babcock TJ, Black BC, Brown DG, Diehl RE, Furch JA, Kameswaran V, Kamhi VM, Kremer KA, Kuhn DG, Lovell JB, Lowen GT, Miller TP, Peevey RM, Siddens JK, Treacy MF, Trotto SH, Wright DP Jr (1992) Insecticidal pyrroles: discovery and overview. In: Baker DR, Fenyes JG, Steffens JJ (Eds) Synthesis and chemistry of agrochemicals. III American Chemical Society, Washington, DC, pp 283–297CrossRefGoogle Scholar
  3. Albuquerque EX, Daly JW, Witkop B (1971) Batrachotoxin: chemistry and pharmacology. Science 172:995–1002PubMedCrossRefGoogle Scholar
  4. Anthoni U, Christophersen C, Madsen JØ, Wium-Andersen S, Jacobsen N (1980) Biologically active sulphur compounds from the green alga Chora globularis. Phytochemistry 19:1228–1229CrossRefGoogle Scholar
  5. Attygalle AB, McCormick KD, Blankespoor CL, Eisner T, Meinwald J (1993) Azamacrolides: a family of alkaloids form the pupal defensive secretion of a ladybird beetle (Epilachna varivestis). Proc Natl Acad Sci USA 90:5204–5208PubMedCrossRefGoogle Scholar
  6. Baldwin IT (1996) Methyl jasmonate-induced nicotine production in Nicotiana attenuata: inducing defenses in the field without wounding. Entomol Exp Appl 80:213–220CrossRefGoogle Scholar
  7. Baldwin IT, Zhang Z-P, Diad N, Ohnmeiss TE, McCloud ES, Gladys GY, Schmelz EA (1997) Quantification, correlations, and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta (Heidelb) 201:397–404CrossRefGoogle Scholar
  8. Barbour JD, Kennedy GG (1991) Role of steroidal glycoalkaloid a-tomatine in host-plant resistance of tomato to Colorado potato beetle. J Chem Ecol 17:989–1005CrossRefGoogle Scholar
  9. Bargar TM, Lett RM, Johnson PL, Hunter JE, Chang CP, Pernich DJ, Sabol MR, Dick MR (1995) Toxicity of pumiliotoxin 25 ID and synthetic analogs to the cotton pest Heliothis virescens. J Agric Food Chem 43:1044–1051CrossRefGoogle Scholar
  10. Barlow RB, Johnson O (1989) Relations between structure and nicotine-like activity: X-ray crystal structure analysis of (-)-cytisine and (-)-lobeline hydrochloride and a comparison with (-)-nicotine and other nicotine-like compounds. BrJ Pharmacol 98:799–808CrossRefGoogle Scholar
  11. Barton DHR, Jeger O, Prelog V, Woodward RB (1954) The constitutions of cevine and some related alkaloids. Experientia (Basel) 10:81–90CrossRefGoogle Scholar
  12. Bellows TS Jr, Morse JG (1993) Toxicity of insecticides used in citrus to Aphytis melinus DeBach (Hymenoptera: Aphelinidae) and Rhizobius lophanthae (Blaisd.) (Coleoptera: Coccinellidae). Can Entomol 125:987–994CrossRefGoogle Scholar
  13. Benn MH, Jacyno JM (1983) The toxicogy and pharmacology of diterpenoid alkaloids. In: Pelletier SW (Ed) Alkaloids. Chemical and biological perspectives. Vol 1. John Wiley & Sons, New York, pp 153–210Google Scholar
  14. Bergmann ED, Levinson ZH, Mechoulam R (1958) The toxicity of Veratrum and Solarium alkaloids to housefly larvae. J Insect Physiol 2:162–177CrossRefGoogle Scholar
  15. Beroza M (1951) Alkaloids from Tripterygium wilfordii Hook-wilforine and wilfordine. J Am Chem Soc 73:3656–3659CrossRefGoogle Scholar
  16. Beroza M, Bottger GT (1954) The insecticidal value of Tripterygium wilfordii. J Econ Entomol 47:188–189Google Scholar
  17. Birnbaum KB, Wiesner K, Jay EWK, Jay L (1971) Configuration of the ring A methoxyl in delphinine and aconitine. Tetrahedron Lett 867–870Google Scholar
  18. Black BC, Hollingworth RM, Ahammadsahib KI, Kukel CD, Donovan S (1994) Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles. Pestic Biochem Physiol 50:115–128CrossRefGoogle Scholar
  19. Blade RJ (1990) Some aspects of synthesis and structure-activity in insecticidal lipid amides. In: Crombie L (Ed) Recent advances in the chemistry of insect control, II. The Royal Society of Chemistry, London, pp 151–169Google Scholar
  20. Blade RJ, Burt PE, Hart RJ, Moss MDV (1985) The action of insecticidal isobutylamide compounds on the insect nervous system. Pestic Sci 16:554Google Scholar
  21. Blanchflower SE, Banks RM, Everett JR, Reading CJ (1991) New paraherquamide antibiotics with anthelmintic activity. J Antibiot (Tokyo) 44:492–497PubMedCrossRefGoogle Scholar
  22. Blizzard TA, Marino G, Mrozik H, Fisher MH, Hoogsteen K, Springer JP (1989) Chemical modifications of paraherquamide. 1. Unusual reactions and absolute stereochemistry. J Org Chem 54:2657–2663CrossRefGoogle Scholar
  23. Blizzard TA, Margiatto G, Mrozik H, Schaeffer JM, Fisher MH (1991) Chemical modification of paraherquamide. 4. 1-N-Substituted analogs. Tetrahedron Lett 32:2441–2444CrossRefGoogle Scholar
  24. Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41:163–190PubMedCrossRefGoogle Scholar
  25. Bloomquist JR, Miller TA (1986) Sodium channel neurotoxins as probes of the knock down resistance mechanism. NeuroToxicology (Little Rock) 7:217–224Google Scholar
  26. Blum MS (1992) Ant venoms: chemical and pharmacological properties. J Toxicol Toxin Rev 11:115–164CrossRefGoogle Scholar
  27. Blum MS (1996) Chemistry and toxicology of arthropod alkaloids. In: Blum MS (Ed) Chemistry and toxicology of diverse classes of alkaloids. Alaken, Fort Collins, CO, pp 145–184Google Scholar
  28. Bringmann G, Rübenacker M, Jansen JR, Scheutzow D, AkéAssi L (1990a) Acetogenic isoquinoline alkaloids. 16. On the structure of the dioncophyllaceae alkaloids dioncophylline A (“triphyophylline”) and “O-methyl-triphyophylline”. Tetrahedron Lett 31:639–642CrossRefGoogle Scholar
  29. Bringmann G, Jansen JR, Reuscher H, Rübenacker M, Peters K, von Schnering HG (1990b) Acetogenic isoquinoline alkaloids. 17. First total synthesis of (-)-dioncophylline A (“triphyophylline”) and of selected stereoisomers: complete (revised) stereostructure. Tetrahedron Lett 31:643–646CrossRefGoogle Scholar
  30. Bringmann G, Pokorny F (1995) The naphthylisoquinoline alkaloids. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol 46. Academic Press, New York, pp 127–271Google Scholar
  31. Bringmann G, Gramatzki S, Grimm C, Proksch P (1992) Feeding deterrency and growth retarding activity of the naphthylisoquinoline alkaloid dioncophylline A against Spodoptera littoralis. Phytochemistry 31:3821–3825CrossRefGoogle Scholar
  32. Bringmann G, Holenz J, Wiesen B, Nugroho BW, Proksch P (1997) Dioncophylline A as a growth-retardant agent against the herbivorous insect Spodoptera littoralis: structure-activity relationships. J Nat Prod 60:342–437PubMedCrossRefGoogle Scholar
  33. Brossi A, Pei X-F (1998) Biological activity of unnatural alkaloid enantiomers. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol 50. Academic Press, San Diego, pp 109–139Google Scholar
  34. Brown KS Jr, Trigo JR (1995) The ecological activity of alkaloids. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol 47. Academic Press, San Diego, pp 227–354Google Scholar
  35. Brown WV, Moore BP (1982) The defensive alkaloids of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae). Aust J Chem 35:1255–1261CrossRefGoogle Scholar
  36. Brüning R, Wagner H (1978) Übersicht über die Celastraceen-Inhaltsstoffe: Chemie, Chemotaxonomie, Biosynthese, Pharmakologie. Phytochemistry 17:1821–1858CrossRefGoogle Scholar
  37. Bush LP, Crowe MW (1989) Nicotiana alkaloids. In: Cheeke PR (Ed) Toxicants of plant origin. Vol I. Alkaloids. CRC Press, Boca Raton, FL, pp 87–107Google Scholar
  38. Campbell BC, Molyneux RJ, Jones KC (1987) Differential inhibition by castanospermine of various insect disaccharidases. J Chem Ecol 13:1759–1770CrossRefGoogle Scholar
  39. Carter GT, Nietsche JA, Goodman JJ, Torrey MJ, Dunne TS, Borders DB, Testa RT (1987) LL-F42248a, a novel chlorinated pyrrole antibiotic. J Antibiot (Tokyo) 40:233–236CrossRefGoogle Scholar
  40. Chuliá S, Ivorra MD, Cavé A, Cortés D, Noguera MA, D’Ocón MP (1995) Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat. J Pharm Pharmacol 47:647–650PubMedCrossRefGoogle Scholar
  41. Codding PW (1983) Structural studies of sodium channel neurotoxins. 2. Crystal structure and absolute configuration of veratridine Perchlorate. J Am Chem Soc 105:3172–3176CrossRefGoogle Scholar
  42. Crombie L (1952) The structure of an insecticidal isobutylamide from pellitory root. Chem Ind(Lond) 1034–1035Google Scholar
  43. Crombie L, Fisher D (1985a) Synthons for general routes to natural insecticidal lipid isobutylamides. Tetrahedron Lett 26:2477–2480CrossRefGoogle Scholar
  44. Crombie L, Fisher D (1985b) Synthesis of natural polyene isobutylamides. Stereochemistry of the Wittig reactions. Tetrahedron Lett 26:2481–2484CrossRefGoogle Scholar
  45. Crombie L, Horsham MA, Blade RJ (1987) Synthetic approaches to isobutylamides of insecticidal interest. Tetrahedron Lett 28:4879–4882CrossRefGoogle Scholar
  46. Crosby DG (1971) Minor insecticides of plant origin. In: Jacobson M, Crosby DG (Eds) Naturally occurring insecticides. Marcel Dekker, New York, pp 177–239Google Scholar
  47. Daly JW, Spande TF (1986) Amphibian alkaloids: chemistry, pharmacology, and biology. In: Pelletier SW (Ed) Alkaloids: chemical and biological perspectives. Vol 4. John Wiley & Sons, New York, pp 1–273Google Scholar
  48. Davey AE, Schaeffer MJ, Taylor RJK (1992) Synthesis of the novel anti-leukaemic tetra-hydrocyclopentalblbenzofuran, rocaglamide and related synthetic studies. J Chem Soc Perkin Trans 1 2657–2666CrossRefGoogle Scholar
  49. Decker MW, Anderson DJ, Brioni JD, Donnelly-Roberts DL, Kang CH, O’Neill AB, Piattoni-Kaplan M, Swanson S, Sullivan JP (1995) Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 280:79–89PubMedCrossRefGoogle Scholar
  50. Dell S, Holding MJ, Perrior TR (1990) The design and synthesis of simple putative analogues of insecticidal alkaloids. Abstracts, Seventh International Congress Pesticide Chemistry (IUPAC), Hamburg, Vol I, Abstr 01B-05, p 97Google Scholar
  51. Delle Monache FD, Marini Bettolo GB, Bernays EA (1984) Isolation of insect antifeedant alkaloids from Maytenus rigida (Celastraceae). Z Angew Entomol 97:406–414CrossRefGoogle Scholar
  52. Deslongchamps P, Bélanger A, Berney DJF, Borschberg H-J, Brousseau R, Doutheau A, Durand R, Katayama H, Lapalme R, Leturc DM, Liao C-C, MacLachlan FN, Maffrand J-P, Marazza F, Martino R, Moreau C, Ruest L, Saint-Laurent L, Saintonge R, Soucy P (1990) The total synthesis of (+)-ryanodol. Part I. General strategy and search for a convenient diene for the construction of a key tricyclic intermediate. Can J Chem 68:115–126CrossRefGoogle Scholar
  53. Devitt BD, Philogène BJR, Hinks CF (1980) Effects of veratrine, berberine, nicotine and atropine on developmental characteristics and survival of the dark-sided cutworm, Euxoa messoria (Lepidoptera: Noctuidae). Phytoprotection 61:88–102Google Scholar
  54. Dyke SF, Quessy SN (1981) Erythrina and related alkaloids. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol XVIII. Academic Press, San Diego, pp 1–98Google Scholar
  55. Ekpa O, Wheeler JW, Cokendolpher JC, Duffield RM (1984) N,N-Dimethyl-β-phenyl-ethylamine and bornyl esters from the harvestman Sclerobunus robustus (Arachnidae: Opiliones). Tetrahedron Lett 25:1315–1318CrossRefGoogle Scholar
  56. Elliott M (1985) Lipophilic insect control agents. In: Janes NF (Ed) Recent advances in the chemistry of insect control agents. The Royal Society of Chemistry, London, pp 73–102Google Scholar
  57. Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA, Sawicki RM (1986) Insecticidal amides with selective potency against a resistant (super-kdr) strain of houseflies (Musca domestica L.) Agric Biol Chem 50:1347–1349CrossRefGoogle Scholar
  58. Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA (1987) Synthesis and insecticidal activity of lipophilic amides. Part 1. Introductory survey, and discovery of an active synthetic compound. Pestic Sci 18:191–201CrossRefGoogle Scholar
  59. Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA (1989) Synthesis and insecticidal activity of lipophilic amides. Part 7. Alternative aromatic groups for phenyl in 6-phenylhexa-dienamides. Pestic Sci 26:199–208CrossRefGoogle Scholar
  60. El Sayed KA, Dunbar DC, Perry TL, Wilkins SP, Hamann MT, Greenplate JT, Wideman MA (1997) Marine natural products as prototype insecticidal agents. J Agric Food Chem 45:2735–2739CrossRefGoogle Scholar
  61. Enzell CR, Wahlberg I, Aasen AJ (1977) Isoprenoids and alkaloids of tobacco. In: Herz W, Grisebach H, Kirby GW (Eds) Fortschritte der Chemie organischer Naturstoffe. Vol 34. Springer-Verlag, Wien, pp 1–79CrossRefGoogle Scholar
  62. Ewete F, Nicol RW, Hengsawad V, Sukumalanand P, Satasook C, Wiriyachitra P, Isman MB, Kahn Y, Duval F, Philogène BJR, Amason JT (1996) Insecticidal activity of Aglaia odorata extract and the active principle, rocaglamide, to the European corn borer, Ostrinia nubilalis Hübn. (Lep., Pyralidae). J Appi Entomol 120:483–88CrossRefGoogle Scholar
  63. Ezaki N, Shomura T, Koyama M, Niwa T, Kojima M, Inouye S, Itô T, Nida T (1981) New chlorinated nitro-pyrrole antibiotics, pyrrolomycin A and B (SF-2080 A and B). J Antibiot (Tokyo) 34:1363–1365CrossRefGoogle Scholar
  64. Fellows LE, Evans SV, Nash RJ, Bell EA (1986) Polyhydroxy-alkaloids as glycosidase inhibitors and their possible ecological role. In: Green MB, Hedin PA (Eds) Natural resistance of plants to pests. American Chemical Society, Washington, DC, pp 72–78CrossRefGoogle Scholar
  65. Fisher RA (1940) Insecticidal action of extracts of Veratrum viride. J Econ Entomol33:728–734Google Scholar
  66. Fodor GB, Colasanti B (1985) The pyridine and piperidine alkaloids: chemistry and pharmacology. In: Pelletier SW (Ed) Alkaloids: chemical and biological perspectives. Vol 3. John Wiley & Sons, New York, pp 1–273Google Scholar
  67. François G, Van Looveren M, Timperman G, Chimanuka B, Aké Assi L, Holenz J, Bringmann G (1996) Larvicidal activity of the naphthylisoquinoline alkaloid dioncophylline A against the malaria vector Anopheles stephensi. J Ethnopharmacol 54:125–130PubMedCrossRefGoogle Scholar
  68. Gbewonyo WSK, Candy DJ, Abderson M (1993) Structure-activity relationships of insecticidal amides from Piper guineense root. Pestic Sci 37:57–66CrossRefGoogle Scholar
  69. Gfeller H, Schlunegger UP, Schaffiier U, Boevé J-L, Ujváry I (1995) Analysis of the chemical defense system in an insect larva by tandem mass spectrometry. J Mass Spectrom 30:1291–1295CrossRefGoogle Scholar
  70. Gloer JB (1995) Antiinsectan natural products from fungal sclerotia. Ace Chem Res 28:343–350CrossRefGoogle Scholar
  71. Gloer JB, Rinderknecht BL, Wicklow DT, Dowd PF (1989) Nominine: a new insecticidal indole diterpene from the sclerotia of Aspergillus nomius. J Org Chem 54:2530–2532CrossRefGoogle Scholar
  72. Götz M, Strunz GM (1973) Tuberostemonine and related compounds: the chemistry of the Stemona alkaloids. In: Wiesner K (Ed) MTP International review of science: organic chemistry, series one. Butterworths, London, pp 143–160Google Scholar
  73. González-Coloma A, Cabrera R, Socorro Monzón AR, Fraga BM (1993) Persea indica as a natural source of the insecticide ryanodol. Phytochemistry 34:397–400CrossRefGoogle Scholar
  74. Greenhill JV, Grayshan P (1992) The cevane group of Veratrum alkaloids. In: Brossi A, Cordell GA (Eds) The alkaloids: chemistry and pharmacology. Vol 41. Academic Press, San Diego, pp 177–237Google Scholar
  75. Greger H (1988) Comparative phytochemistry of the alkamides. In: Lam J, Breteler H, Amason T, Hansen L (Eds) Chemistry and biology of naturally-occurring acetylenes and related compounds (NOARC). Elsevier, Amsterdam, pp 159–178Google Scholar
  76. Greger H., Zechner G, Hofer O, Vajrodaya S (1996) Bioactive amides from Glycosmis species. J Nat Prod 59:1163–1168PubMedCrossRefGoogle Scholar
  77. Güssregen B, Fuhr M, Nugroho BW, Wray V, Witte L, Proksch P (1997) New insecticidal rocaglamide derivatives from flowers of Aglaia odorata. Z Naturforsch 52C:339–344Google Scholar
  78. Gusovsky F, Padgett WL, Creveling CR, Daly JW (1992) Interaction of pumiliotoxin B with an “alkaloid-binding domain” on the voltage-dependent sodium channel. Mol Pharmacol 42:1104–1108PubMedGoogle Scholar
  79. Harborne JB (1993) Introduction to ecological biochemistry. 4th edn. Academic Press, London, p 318Google Scholar
  80. Hardick DJ, Cooper G, Scott-Ward T, Blagbrough IS, Potter BVL, Wonnacott S (1995) Conversion of the sodium channel activator aconitine into a potent α7-selective nicotinic ligand. FEBS Lett 365:79–82PubMedCrossRefGoogle Scholar
  81. Hardick DJ, Blagbrough IS, Cooper G, Potter BVL, Critchley T, Wonnacott S (1996) Nudicauline and elatine as potent norditerpenoid ligands at rat neural α-bungarotoxin binding sites: importance of the 2-(methylsuccinimido)benzoyl moiety for neuronal nicotinic acetylcholine receptor binding. J Med Chem 39:4860–4866PubMedCrossRefGoogle Scholar
  82. Hare JD, Morse JG (1997) Toxicity, persistence, and potency of sabadilla alkaloid formulations to citrus thrips (Thysanoptera: Thripidae). J Econ Entomol 90:326–332Google Scholar
  83. Harper SH, Potter C, Gillham EM (1947) Annona species as insecticides. Ann Appl Biol 34:104–112PubMedCrossRefGoogle Scholar
  84. Hayashi H, Takiuchi K, Murao S, Arai M (1989) Structure and insertici dal activity of new indole alkaloids, okaramines A and B, from Pénicillium simplicissimum AK-40. Agric Biol Chem 53:461–469CrossRefGoogle Scholar
  85. Hayashi H, Fujiwara T, Murao S, Arai M (1991) Okaramine C, a new insecticidal indole alkaloid from Penicillium simplicissimum. Agric Biol Chem 55:3143–3145CrossRefGoogle Scholar
  86. Hill RK, Renbaum LA (1982) Asymmetric syntheses of the ladybug alkaloid adaline and 1-methyl-9-azabicyclo[3.3.1]nonan-3-one. Tetrahedron 38:1959–1963CrossRefGoogle Scholar
  87. Helmstedt B (1972) The ordeal bean of Old Calabar: the pageant of Physostigma venenosum in medicine. In: Swain T (Ed) Plants in the development of modern medicine. Harvard University Press, Cambridge, MA, pp 303–360Google Scholar
  88. Hopf HS (1952) Studies in the mode of action of insecticides. I. Injection experiments on the role of Cholinesterase inhibition. Ann Appi Biol 39:193–202CrossRefGoogle Scholar
  89. Isogai A, Horii T, Suzuki A, Murakoshi S, Ikeda K, Sato S, Tamura S (1975) Isolation and identification of nigragillin as a insecticidal metabolite produced by a Aspergillus niger. Agrie Biol Chem 39:739–740CrossRefGoogle Scholar
  90. Jackson KE (1941) Alkaloids of tobacco. Chem Rev 29:123–197CrossRefGoogle Scholar
  91. Jacobi PA, Lee K (1997) Total synthesis of (±)-stemoamide. J Am Chem Soc 119:3409–3410CrossRefGoogle Scholar
  92. Jacobsen N, Pedersen LEK (1983) Synthesis and insecticidal properties of derivatives of propane-1,3-dithiol (Analogues of the insecticidal derivatives of dithiolane and trithiane from the alga Chara globularis Thuillier) Pestic Sci 14:90–97CrossRefGoogle Scholar
  93. Jacobson M (1948) Herculin, a pungent insecticidal constituent of southern prickly ash bark. J Am Chem Soc 70:4234–4237PubMedCrossRefGoogle Scholar
  94. Jacobson M (1949) The structure of pellitorine. J Am Chem Soc 71:366–367PubMedCrossRefGoogle Scholar
  95. Jacobson M (1953) Pellitorine isomers. II. The synthesis of N-isobxxtyl-trans-2,trans-4-decadienamide. J Am Chem Soc 75:2584–2586CrossRefGoogle Scholar
  96. Jacobson M (1971) The unsaturated isobutylamides. In: Jacobson M, Crosby DG (eds) Naturally occurring insecticides. Marcel Dekker, New York, pp 137–176Google Scholar
  97. Jacobson M, Crosby DG (Eds) (1971) Naturally occurring insecticides. Marcel Dekker, New York, p 585Google Scholar
  98. Jacyno JM (1996) Chemistry and toxicology of the diterpenoid alkaloids. In: Blum MS (Ed) Chemistry and toxicology of diverse classes of alkaloids. Alaken, Fort Collins, CO, pp 301–336Google Scholar
  99. Janprasert J, Satasook C, Sukumalanand P, Champagne DE, Isman MB, Wiriyachitra P, Towers GHN (1993) Rocaglamide, a natural benzofiiran insecticide from Aglaia odorata. Phytochemistry 32:67–69CrossRefGoogle Scholar
  100. Jefferies PR, Toia RF, Brannigan B, Pessah I, Casida JE (1992) Ryania insecticide: analysis and biological activity of 10 natural ryanoids. J Agrie Food Chem 40:142–146CrossRefGoogle Scholar
  101. Jefferies PR, Casida JE (1994) Ryanoid chemistry and action. In: Hedin PA, Menn J J, Hollingworth RM (Eds) Natural and engineered pest management agents. American Chemical Society, Washington, DC, pp 130–144Google Scholar
  102. Jefferies PR, Yu P, Casida JE (1997) Structural modifications increase the insecticidal activity of ryanodine. Pestic Sci 51:33–38CrossRefGoogle Scholar
  103. Jennings KR, Brown DG, Wright DP Jr (1986) Methyllycaconitine, a naturally occurring insecticide with a high affinity for the insect cholinergic receptor. Experientia (Basel) 42:611–613CrossRefGoogle Scholar
  104. Jones TH, Blum MS (1983) Arthropod alkaloids: distribution, functions, and chemistry. In: Pelletier SW (Ed) Alkaloids: chemical and biological perspectives. Vol 1. John Wiley & Sons, New York, pp 33–84Google Scholar
  105. Karadsheh N, Kussie P, Linthicum DS (1991) Inhibition of acetylcholinesterase by caffeine, anabasine, methyl pyrrolidine and their derivatives. Toxicol Lett 55:335–342PubMedCrossRefGoogle Scholar
  106. Kato A, Ichimaru M, Hashimoto Y, Mitsudera H (1989) Guinesine-A,-B and-C: new sulfur containing insecticidal alkaloids from Cassipourea guianensis. Tetrahedron Lett 30:3671–3674CrossRefGoogle Scholar
  107. Keukens EAJ, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WMF, de Kruijff B (1995) Molecular basis of glycoalkalod induced membrane disruption. Biochim Biophys Acta Biomembranes 1240:216–228CrossRefGoogle Scholar
  108. King AG, Meinwald J (1996) Review of the defensive chemistry of coccinellids. Chem Rev 96:1105–1122CrossRefGoogle Scholar
  109. King ML, Chiang C-C, Ling H-C, Fujita E, Ochiai M, McPhail AT (1982) X-Ray crystal structure of rocaglamide, a novel antileukemic lH-cyclopenta[b]benzofuran from Aglaia elliptifolia. J Chem Soc Chem Commun 1150–1151Google Scholar
  110. Kinghorn AD, Balandrin MF (1984) Quinolizidine alkaloids of the Leguminosae: structural types, analysis, chemotaxonomy, and toxicological activities. In: Pelletier SW (Ed) Alkaloids, chemical and biological perspectives. Vol 2. John Wiley & Sons, New York, pp 105–148Google Scholar
  111. Klocke JA (1989) Plant compounds as sources and models of insect-control agents. In: Wagner H, Hikino H, Farnsworth NR (Eds) Economic and medicinal plant research. Vol 3. Academic Press, London, pp 103–144CrossRefGoogle Scholar
  112. Konishi K (1972) Nereistoxin and its relatives. In: Tahori AS (Ed) Pesticide chemistry. Vol 1. Insecticides. Gordon and Breach, New York, pp 179–189Google Scholar
  113. Kosower EM (1983) A hypothesis for the mechanism of sodium channel opening by batrachotoxin and related toxins. FEBS Lett 163:161–164PubMedCrossRefGoogle Scholar
  114. Koyama M, Ezaki N, Tsuruoka T, Inouye S (1983) Structural studies on pyrrolomycins C, D and E. J Antibiot (Tokyo) 36:1483–1489CrossRefGoogle Scholar
  115. Kubo I, Matsumoto T, Klocke JA, Kamikawa T (1984) Molluscicidal and insecticidal activities of isobutylamides isolated from Fagara macrophylla. Experientia (Basel) 40:340–341CrossRefGoogle Scholar
  116. Kuhn DG (1997) Structure-activity relationships for insecticidal pyrroles. In: Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (Eds) Phytochemicals for pest control. American Chemical Society, Washington, DC, pp 195–205CrossRefGoogle Scholar
  117. Kuhr RJ, Dorough HW (1976) Carbamate insecticides: chemistry, biochemistry, and toxicology. CRC Press, Cleveland, OH, p 301Google Scholar
  118. Kukel CF, Jennings KR (1994) Delphinium alkaloids as inhibitors of α-bungarotoxin binding to rat and insect neural membranes. Can J Physiol Pharmacol 72:104–107PubMedCrossRefGoogle Scholar
  119. Kukel CF, Jennings KR (1995) Erratum. Can J Physiol Pharmacol 73:145CrossRefGoogle Scholar
  120. Kupchan SM, Flacke WE (1967) Hypotensive Veratrum alkaloids. In: SchÜttler E (Ed) Antihypertensive agents. Academic Press, New York, pp 429–458Google Scholar
  121. Leal WS, Zarbin PHG, Wojtasek H, Kuwahara S, Hasegawa M, Ueda Y (1997) Medicinal alkaloid as a sex pheromone. Nature (Lond) 385:213CrossRefGoogle Scholar
  122. Leboeuf M, Cavé A, Bhaumik PK, Mukherjee B, Mukherjee R (1982) The phytochemistry of the Annonaceae. Phytochemistry 21:2783–2813CrossRefGoogle Scholar
  123. Lee BH, Clothier MF (1997) Conversion of marcfortine A to paraherquamide A via paraherquamide B. The first formal synthesis of paraherquamide A. J Org Chem 62:1795–1798Google Scholar
  124. Leete E (1983) Biosynthesis and metabolism of the tobacco alkaloids. In: Pelletier SW (Ed) Alkaloids, chemical and biological perspectives. Vol 1. John Wiley & Sons, New York, pp 85–152Google Scholar
  125. Levinson HZ (1976) The defensive role of alkaloids in insects and plants. Experientia (Basel) 32:408–411CrossRefGoogle Scholar
  126. Li Ya, Strunz GM, Calhoun LA (1990) Sesquiterpene alkaloids from Tripterygium wilfordii (Hook): a nuclear magnetic resonance study of l-desacetylwilfordine, 1-des-acetylwilfortrine, and 2-debenzoyl-2-nicotinoylwilforine. Can J Chem 68:371–374CrossRefGoogle Scholar
  127. Liesch JM, Wichmann CF (1990) Novel antinematodal and antiparasitic agents from Penicillium charlesii. II. Structure determination of paraherquamides B, C, D, E, F, and G. J Antibiot (Tokyo) 43:1380–1386CrossRefGoogle Scholar
  128. Liu M-Y, Latli B, Casida JE (1995) Imidacloprid binding site in Musca nicotinic acetylcholine receptor: interactions with physostigmine and a variety of nicotinic agonists with chloropyridyl and chlorothiazolyl substituents. Pestic Biochem Physiol 52:170–181CrossRefGoogle Scholar
  129. Mclnerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DRJ, Engelhardt LM, White AH (1991) Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54:774–784CrossRefGoogle Scholar
  130. McLaughlin JL, Zeng L, Oberlies NH, Alfonso D, Johnson HA, Cummings B A (1997) Annonaceous acetogenins as new natural pesticides: recent progress. In: Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (Eds) Phytochemicals for pest control. American Chemical Society, Washington, DC, pp 117–133CrossRefGoogle Scholar
  131. Meinwald YC, Meinwald J, Eisner T (1966) l,2-Dialkyl-4-(3H)-quinazolinones in the defensive secretion of a millipede (Glomeris marginata). Science 154:390–391PubMedCrossRefGoogle Scholar
  132. Meisters A, Wailes PC (1966a) Synthesis of four geometrical isomers of hexadeca-2,6,8, 12-tetraenoic acid. The insecticidal properties of their isobutylamides. Aust J Chem 19:1207–1213CrossRefGoogle Scholar
  133. Meisters A, Wailes PC (1966b) The isobutylamides of 7-phenylhepta-2,4-dienoic acid, 7-phenylhepta-2,4,6-trienoic acid, and p-(2-phenylethyl)benzoic acid. Aust J Chem 19:1215–1220CrossRefGoogle Scholar
  134. Metcalf RL (1955) Nicotine, nornicotine, and anabasine. In: Metcalf R (Ed) Organic insecticides: their chemistry and mode of action. Interscience, New York, pp 1–21Google Scholar
  135. Mitsudera H, Kamikado T, Uneme H, Kono Y (1990a) Synthesis and biological activity of 4-alkylthio-l,2-dithiolanes and related compounds. Agrie Biol Chem 54:1719–1722CrossRefGoogle Scholar
  136. Mitsudera H, Kamikado T, Uneme H, Manabe Y (1990b) Synthesis and biological activity of 5-alkylthio-l,3-dithianes. Agric Biol Chem 54:1723–1730CrossRefGoogle Scholar
  137. Mitsudera H, Uneme H, Okada Y, Numata M, Kato A (1990c) Synthesis of dl-guinesines and related compounds. J Heterocycl Chem 27:1361–1367CrossRefGoogle Scholar
  138. Miyakado M, Nakayama I, Yoshioka H (1980) Insecticidal joint action of pipercide and co-occurring compounds isolated from Piper nigrum L. Agric Biol Chem 44:1701–1703CrossRefGoogle Scholar
  139. Miyakado M, Nakayama I, Inoue A, Hatakoshi M, Ohno N (1985a) Chemistry and insecticidal activities of Piperaceae amides and their synthetic analogues. J Pestic Sci 10:11–17CrossRefGoogle Scholar
  140. Miyakado M, Nakayama I, Inoue A, Hatakoshi M, Ohno N (1985b) Insecticidal activities of phenoxy analogues of dihydropipercide. J Pestic Sci 10:25–30CrossRefGoogle Scholar
  141. Miyakado M, Nakayama I, Ohno N (1989) Insecticidal unsaturated isobutylamides. From natural products to agrochemical leads. In: Arnason JT, Philogène BJR, Morand P (Eds) Insecticides of plant origin. American Chemical Society, Washington,DC, pp 173–187CrossRefGoogle Scholar
  142. Molyneux RJ (1993) Isolation, characterization and analysis of polyhydroxy alkaloids. Phytochem Anal 4:193–204CrossRefGoogle Scholar
  143. Mroue M, Alam M (1991) Crooksiine, a bisindole alkaloid from Haplophyton crooksii. Phytochemistry 30:1741–1744CrossRefGoogle Scholar
  144. Mukhamedzhanov SZ, Aslanov KA, Sadykov AS, Leontev VB, Kiryukhin VK (1968) The structure of anabasamine. Khim Prir Soedin 4:158–161 (in Russian)Google Scholar
  145. Murao S, Hayashi H (1986) Physostigmine and N 8-norphysostigmine, insecticidal compounds, from Streptomyces sp. Agric Biol Chem 50:523–524CrossRefGoogle Scholar
  146. Murray CL, Quaglia M, Arnason JT, Morris CE (1994) A putative nicotine pump at the metabolic blood-brain barrier of the tobacco hornworm. J Neurobiol 25:23–34PubMedCrossRefGoogle Scholar
  147. Nakamura H, Shiomi K, Iinuma H, Naganawa H, Obata T, Takeuchi T, Umezawa H, Takeuchi Y, Iitaka Y (1987) Isolation and characterization of a new antibiotic, dioxapyrrolomycin, related to pyrrolomycins. J Antibiot (Tokyo) 40:899–903CrossRefGoogle Scholar
  148. Nathanson JA (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226:184–187PubMedCrossRefGoogle Scholar
  149. Nathanson JA, Hunnicutt EJ, Kantham L, Scavone C (1993) Cocaine as a naturally occurring insecticide. Proc Natl Acad Sci USA 90:9645–9648PubMedCrossRefGoogle Scholar
  150. Negherbon WO (1959) Nicotine. In: Handbook of toxicology. Vol IH: Insecticides. A compendium. WB Saunders, Philadelphia, pp 508–519Google Scholar
  151. Nicholson RA, Botham RP, Blade RJ (1985) The interaction of sodium channel directed neurotoxicants and a novel insecticidal isobutylamide with central nerve terminals prepared from the cockroach (Periplaneta americana). Pestic Sci 16:554–555CrossRefGoogle Scholar
  152. Nugroho BW, Edrada RA, GÜssregen B, Wray V, Witte L, Proksch P (1997) Insecticidal rocaglamide derivatives from Aglaia duppereana. Phytochemistry 44:1455–1461CrossRefGoogle Scholar
  153. Ninnata A, Ibuka T (1987) Alkaloids from ants and other insects. In: Brossi A (Ed) The alkaloids: chemistry and pharmacology. Vol 31. Academic Press, San Diego, pp 193–315Google Scholar
  154. Okaichi T, Hashimoto Y (1962) The structure of nereistoxin. Agrie Biol Chem 26:224–227Google Scholar
  155. Ondeyka JG, Goegelman RT, Schaeffer JM, Kelemen L, Zitano L (1990) Novel antinematodal and antiparasitic agents from Penicillium charlesii. I. Fermentation, isolation and biological activity. J Antibiot (Tokyo) 43:1375–1379CrossRefGoogle Scholar
  156. Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A, Shoop WL, Slayton L, Dombrowski AW, Polishook JD, Ostlind DA, Tsou NN, Ball RG, Singh SB (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. Isolation, structure determination, and chemical transformations. J Am Chem Soc 119:8809–8816CrossRefGoogle Scholar
  157. Orechoff A, Menschikoff G (1931) Über die Alkaloide von Anabasis aphylla L. Ber Dtsch Chem Ges 64:266–274CrossRefGoogle Scholar
  158. Ottea JA, Payne GT, Soderlund DM (1990) Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel. J Agrie Food Chem 38:1724–1728CrossRefGoogle Scholar
  159. Pauron D, Barhanin J, Amichot M, Pralavorio M, Bergé J-B, Lazdunski M (1989) Pyrethroid receptor in the insect Na+ channel: alteration of its properties in pyrethroid-resistant flies. Biochemistry 28:1673–1677CrossRefGoogle Scholar
  160. Pelletier PJ, Caventou JB (1820) Examen chimique de plusieurs végétaux de la famille des colchicées, et du principe actif qu’ils renferment. [Cévadille (veratrum sabadilla); hellébore blanc (veratrum album); colchique commun (colchicum autumnale)]. Ann Chim Phys 14:69–83Google Scholar
  161. Pelletier SW (1983) The nature and definition of an alkaloid. In: Pelletier SW (Ed) Alkaloids: chemical and biological perspectives. Vol 1. John Wiley & Sons, New York, pp 1–31Google Scholar
  162. Pelletier SW, Mody NV, Varughese KI, Maddry JA, Desai HK (1981) Structure revision of 37 lycoctonine-related diterpenoid alkaloids. J Am Chem Soc 103:6536–6538CrossRefGoogle Scholar
  163. Pelletier SW, Mody NV (1979) The structure and synthesis of C19-diterpenoid alkaloids. In: Manske RHF, Rodrigo RGA (Eds) The alkaloids: chemistry and physiology. Vol XVII. Academic Press, New York, pp 1–103Google Scholar
  164. Pinner A (1893) Ueber Nicotin. Die Constitution des Alkaloids. Ber Dtsch Chem Ges 26:292–305CrossRefGoogle Scholar
  165. Posselt W, Reimann L (1828) Chemische Untersuchung des Tabaks und Darstellung des eigentümlichen wirksamen Princips dieser Pflanze. Geiger’s Mag Parmac 24:138–161Google Scholar
  166. Rae ID, Rosenberger M, Szabo AG, Willis CR, Yates P, Zacharias DE, Jeffrey GA, Douglas B, Kirkpatrick JL, Weisbach JA (1967) Haplophytine. J Am Chem Soc 89:3061–3062CrossRefGoogle Scholar
  167. Roddick JG (1989) The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry 28:2631–2634CrossRefGoogle Scholar
  168. Rogers EF, Koniuszy FR, Shavel JJ, Folkers K (1948) Plant insecticides. I. Ryanodine, a new alkaloid from Ryania speciosa Vahl. J Am Chem Soc 70:3086–3088PubMedCrossRefGoogle Scholar
  169. Rogers EF, Snyder HR, Fischer RF (1952) Plant insecticides. II. The alkaloids of Haplophyton cimicidum. J Am Chem Soc 74:1987–1989CrossRefGoogle Scholar
  170. Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480CrossRefGoogle Scholar
  171. Sakai M, Sato Y (1972) Metabolic conversion of the nereistoxin-related compounds into nereistoxin as a factor of their insecticidal action. In: Tahori AS (Ed) Pesticide chemistry. Vol 1. Insecticides. Gordon and Breach, New York, pp 455–467Google Scholar
  172. Sakata K, Aoki K, Chang C-F, Sakurai A, Tamura S, Murakoshi S (1978) Stemospironine, a new insecticidal alkaloid of Stemona japónica Miq. Isolation, structural determination and activity. Agric Biol Chem 42:457–463CrossRefGoogle Scholar
  173. Satasook C, Isman MB, Wiriyachitra P (1992) Activity of rocaglamide, an insecticidal natural product, against the variegated cutworm, Peridroma saucia (Lepidoptera: Noctuidae). Pestic Sci 36:53–58CrossRefGoogle Scholar
  174. Saxena RC, Harshan V, Saxena A, Sukumaran P, Sharma MC, Lakshamana Kumar M (1993) Larvicidal and chemosterilant activity of Annona squamosa alkaloids against Anopheles stephensi. J Am Mosq Control Assoc 9:84–87PubMedGoogle Scholar
  175. Schaffner U, Boevé J-L, Gfeller H, Schlunegger UP (1994) Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20:3233–3249CrossRefGoogle Scholar
  176. Schildknecht H, Maschwitz U, Wenneis WF (1967) Neue Stoffe aus dem Wehrsekret der Diplopodengattung Glomeris. Naturwissenschaften 54:196–197PubMedCrossRefGoogle Scholar
  177. Schmeller T, Latz-Brüning B, Wink M (1997) Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44:257–266PubMedCrossRefGoogle Scholar
  178. Schmeltz I (1971) Nicotine and other tobacco alkaloids. In: Jacobson M, Crosby DG (Eds) Naturally occurring insecticides. Marcel Dekker, New York, pp 99–1360Google Scholar
  179. Schmitt M, Turberg A, Londershausen M, Dora A (1996) Binding sites for Ca2+-channel effectors and ryanodine in Periplaneta americana-possible targets for new insecticides. Pestic Sci 48:375–385CrossRefGoogle Scholar
  180. Schreiber K (1968) Steroid alkaloids: the Solanum group. In: Manske RHF (Ed) The alkaloids: chemistry and physiology. Vol X. Academic Press, New York, pp 1–192CrossRefGoogle Scholar
  181. Schröder F, Franke S, Francke W, Baumann H, Kaib M, Pasteéis JM, Daloze D (1996) A new family of tricyclic alkaloids from Myrmicaria ants. Tetrahedron 52:13539–13546CrossRefGoogle Scholar
  182. Scofield AM, Witham P, Nash RJ, Kite GC, Fellows LE (1995) Castanospermine and other polyhydroxy alkaloids as inhibitors of insect glycosidases. Comp Biochem Physiol 112A:187–196CrossRefGoogle Scholar
  183. Seeman JI (1984) Recent studies in nicotine chemistry. Conformational analysis, chemical reactivity studies, and theoretical modeling. Heterocycles (Tokyo) 22:165–193CrossRefGoogle Scholar
  184. Severson RF, Huesing JE, Jones D, Arrendale RF, Sisson VA (1988) Identification of tobacco hornworm antibiosis factor from cuticulae of Repandae section of Nicotiana species. J Chem Ecol 14:1485–1494CrossRefGoogle Scholar
  185. Sharma RP, Salunkhe DK (1989) Solanum glycoalkaloids. In: Cheeke PR (Ed) Toxicants of plant origin. Vol 1. Alkaloids. CRC Press, Boca Raton,FL, pp 179–236Google Scholar
  186. Shepard HH (1951a) Plant products: nicotine and other alkaloids. In: Shepard HH (Ed) The chemistry and action of insecticides. McGraw-Hill, New York, pp 115–143Google Scholar
  187. Shepard HH (1951b) Pyrethrins, rotenone, and miscellaneous plant extractives. In: Shepard HH (Ed) The chemistry and action of insecticides. McGraw-Hill, New York, pp 144–190Google Scholar
  188. Sherby SM, Eldefrawi AT, David JA, Sattelle DB, Eldefrawi ME (1986) Interactions of charatoxins and nereistoxin with the nicotinic acetylcholine receptors of insect CNS and Torpedo electric organ. Arch Insect Biochem Physiol 3:431–445CrossRefGoogle Scholar
  189. Shinozaki H, Ishida M (1985) Inhibitory actions of tuberstemonine on the excitatory transmission at the crayfish neuromuscular junction. Brain Res 334:33–40PubMedCrossRefGoogle Scholar
  190. Smith CR, Richardson CH, Shepard HH (1930) Neonicotine and certain other derivatives of the dipyridyls as insecticides. J Econ Entomol 23:863–867Google Scholar
  191. Smith RM (1977) The Celastraceae alkaloids. In: Manske RHF (Ed) The alkaloids: chemistry and physiology. Vol 16. Academic Press, New York, pp 215–248Google Scholar
  192. Smolanoff J, Kluge AF, Meinwald J, McPhail A, Miller RW, Hicks K, Eisner T (1975) Polyzonimine: a novel terpenoid insect repellent produced by a milliped. Science 188:734–736PubMedCrossRefGoogle Scholar
  193. Srivastava SN, Przybylska M (1970) The crystal structure of ryanodol p-bromobenzyl ether. Acta Crystallogr B 26:707–715CrossRefGoogle Scholar
  194. Staub GM, Gloer JB, Wicklow DT, Dowd PF (1992) Aspernomine: a cytotoxic antiinsectan metabolite with a novel ring system from the sclerotia of Aspergillus nomius. J Am Chem Soc 114:1015–1017CrossRefGoogle Scholar
  195. Staub GM, Gloer KB, Gloer JB, Wicklow DT, Dowd PF (1993) New paspalinine derivatives with antiinsectan activity from the sclerotia of Aspergillus nomius. Tetrahedron Lett 34:2569–2572CrossRefGoogle Scholar
  196. Stedman E, Barger G (1925) Physostigmine (eserine). Part HI. J Chem Soc 127:247–258CrossRefGoogle Scholar
  197. Strunz GM, Finlay H (1994) Concise, efficient new synthesis of pipercide, an insecticidal unsaturated amide from Piper nigrum, and related compounds. Tetrahedron 50:11113–11122CrossRefGoogle Scholar
  198. Su HCF (1985) N-Isobutylamides. In: Kerkut GA, Gilbert LI (Eds) Comprehensive insect physiology, biochemistry and pharmacology. Vol 12. Insect control. Pergamon Press, Oxford, pp 273–289Google Scholar
  199. Sutko JL, Airey JA, Welch W, Ruest L (1997) The pharmacology of ryanodine and related compounds. Pharmacol Rev 49:53–98PubMedGoogle Scholar
  200. Swingle WT, Haller HL, Siegler EH, Swingle MC (1941) A Chinese insecticidal plant, Tripterygium wilfordii, introduced into the United States. Science 93:60–61PubMedCrossRefGoogle Scholar
  201. Tattersfield F, Gimingham CT, Morris HM (1926) Studies on contact insecticides. Part IV. A quantitative examination of the toxicity of certain plants and plant products to Aphis rumicis L. (the bean aphis). Ann Appl Biol 13:424–445CrossRefGoogle Scholar
  202. Thomas EJ (1994) Approaches to the synthesis of insecticidal compounds. In: Briggs GG (Ed) Advances in the chemistry of insect control. DL Royal Society of Chemistry, Cambridge, UK, pp 223–237Google Scholar
  203. Toia RF (1990) Ant secretions as a source of natural product models for possible pest control agents. In: Casida JE (Ed) Pesticides and alternatives: innovative chemical and biological approaches to pest control. Elsevier Science, Amsterdam, pp 301–309Google Scholar
  204. Tokuyama T, Daly JW (1983) Sterodial alkaloids (batrachotoxins and 4β-hydroxy-batrachotoxins), “indole alkaloids” (calycanthine and chimonanthine) and a piperidinyl-dipyridine alkaloid (noranabasamine) in skin extracts from the Colombian poison-dart frog Phyllobates terribilis (Dendrobatidae). Tetrahedron 39:41–47CrossRefGoogle Scholar
  205. Trost BM, Greenspan PD, Yang BV, Saulnier MG (1990) An unusual oxidative cyclization. A synthesis and absolute stereochemical assignment of (-J-rocaglamide. J Am Chem Soc 112:9022–9024CrossRefGoogle Scholar
  206. Tsao R, Eto M (1989) Chemical and photochemical transformation of the insecticide cartap hydrochloride into nereistoxin. J Pestic Sci 14:47–51CrossRefGoogle Scholar
  207. Tursch B, Daloze D, Dupont M, Pasteeis JM, Tricot M-C (1971) A defense alkaloid from a carnivorous beetle. Experientia (Basel) 27:1380–1381CrossRefGoogle Scholar
  208. Tursch B, Braekman JC, Daloze D, Hootele C, Losman D, Karlsson R, Pasteéis JM (1973) Chemical ecology of arthropods, VI, adaline a novel alkaloid from Adalia bipunctata L. (Coleóptera, Coccinellidae). Tetrahedron Lett 201–202Google Scholar
  209. Ujváry I, Eya BK, Grendell RL, Toia RF, Casida JE (1991) Insecticidal activity of various 3-acyl and other derivatives of veracevine relative to the Veratrum alkaloids veratridine and cevadine. J Agrie Food Chem 39:1875–1881CrossRefGoogle Scholar
  210. Ujváry I, Polgar L, Darvas L, Casida JE (1995) Non-steroidal analogues of veratridine: model-based design, synthesis and insecticidal activity. Pestic Sci 44:95–102CrossRefGoogle Scholar
  211. Ujváry I, Casida JE (1997) Partial synthesis of 3-0-vanilloylveracevine, an insecticidal alkaloid from Schoenocaulon officinale. Phytochemistry 44:1257–1260PubMedCrossRefGoogle Scholar
  212. Usherwood PNR, Vais H (1995) Towards the development of ryanoid insecticides with low mammalian toxicity. Toxicol Lett 82/83:247–254CrossRefGoogle Scholar
  213. Wada K, Munakata K (1967) An insecticidal alkaloid, cocculolidine from Cocculus trilobus DC. Part I. The isolation and the insecticidal activity of cocculolidine. Agric Biol Chem 31:336–339CrossRefGoogle Scholar
  214. Wada K, Munakata K (1968) Naturally occurring insect control chemicals. Isoboldine, a feeding inhibitor, and cocculolidine, an insecticide in the leaves of Cocculus trilobus DC. J Agrie Food Chem 16:471–174CrossRefGoogle Scholar
  215. Wada K, Marumo S, Munakata K (1966) An insecticidal alkaloid, cocculolidine from Cocculus trilobus. Tetrahedron Lett 5179–5184Google Scholar
  216. Wada K, Marumo S, Munakata K (1967) An insecticidal alkaloid, cocculolidine from Cocculus trilobus DC. Part H. The structure of cocculolidine. Agrie Biol Chem 31:452–460CrossRefGoogle Scholar
  217. Wada K, Marumo S, Munakata K (1968) An insecticidal alkaloid, cocculolidine from Cocculus trilobus DC. Part DL The stereochemistry of cocculolidine. Agrie Biol Chem 32:1187–1189CrossRefGoogle Scholar
  218. Waterhouse AL, Holden I, Casida JE (1984) 9,21-Didehydroryanodine: a new principal toxic constituent of the botanical insecticide Ryania. J Chem Soc Chem Commun 1265–1266Google Scholar
  219. Waterhouse AL, Pessah IN, Francini AO, Casida JE (1987) Structural aspects of ryanodine action and selectivity. J Med Chem 30:710–716PubMedCrossRefGoogle Scholar
  220. Wheeler JW, Olubajo O, Storm CB, Duffield RM (1981) Anabaseine: venom alkaloid of Aphaenogaster ants. Science 211:1051–1052PubMedCrossRefGoogle Scholar
  221. Whyte AC, Gloer JB, Wicklow DT, Dowd PF (1996) Sclerotiamide: a new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. J Nat Prod 59:1093–1095PubMedCrossRefGoogle Scholar
  222. Wicklow DT, Dowd PF, Gloer JB (1994) Antiinsectan effects of Aspergillus metabolites. In: Powell KA, Renwick A, Peberdy JF (Eds) The genus Aspergillus: from taxonomy and genetics to industrial application. Plenum Press, New York, pp 93–114Google Scholar
  223. Wieland H, Dragendorff O (1929) Die Konstitution der Lobelia-Alkaloide. Ann Chem 473:83–102CrossRefGoogle Scholar
  224. Wiesner K (1972) The structure of ryanodine. Adv Org Chem 8:295–316.Google Scholar
  225. Wink M (1993a) Allelochemical properties or the raison d’etre of alkaloids. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol 43. Academic Press, San Diego, pp 1–118Google Scholar
  226. Wink M (1993b) Production and application of phytochemicals from an agricultural perspective. In: van Beek TA, Breteler H (Eds) Phytochemistry and agriculture. Clarendon Press, Oxford, pp 171–213Google Scholar
  227. Winchester B (1992) Natural and synthetic inhibitors of glycosidases. Biochem Soc Trans 20:699–705PubMedGoogle Scholar
  228. Witkop B, Gössinger E (1983) Amphibian alkaloids. In: Brossi A(Ed) The alkaloids: chemistry and pharmacology. Vol XXL Academic Press, New York, pp 139–253CrossRefGoogle Scholar
  229. Xie Y, McHugh T, McKay J, Jones GS Jr, Loring RH (1996) Evidence that a nereistoxin metabolite, and not nereistoxin itself, reduces neuronal nicotinic receptors: studies in the whole chick ciliary ganglion, on isolated neurons and immunoprecipitated receptors. J Pharmacol Exp Ther 276:169–177PubMedGoogle Scholar
  230. Yamada K, Shizuri Y, Hirata Y (1978) Isolation and structures of a new alkaloid alatamine and an insecticidal alkaloid wilfordine from Euonymus alatus forma striatus (Thunb.) Makino. Tetrahedron 34:1915–1920CrossRefGoogle Scholar
  231. Yamamoto I (1965) Nicotinoids as insecticides. In: Metcalf RL (Ed) Advances in pest control research. Vol VL John Wiley & Sons, New York, pp 231–260Google Scholar
  232. Yamazaki M, Okuyama E, Kobayashi M, Inoue H (1981) The structure of paraherquamide, a toxic metabolite from Pénicillium paraherquei. Tetrahedron Lett 22:135–136CrossRefGoogle Scholar
  233. Yano K, Oono J, Mogi K, Asaoka T, Nakashima T (1987) Pyrroxamycin, a new antibiotic. Taxonomy, fermentation, isolation, structure determination and biological properties. J Antibiot (Tokyo) 40:961–969CrossRefGoogle Scholar
  234. Yates P, MacLachlan FN, Rae ID, Rosenberg M, Szabo AG, Willis CR, Cava MP, Behforouz M, Lakshmikantham MV, Zeiger W (1973) Haplophytine. A novel type of indole alkaloid. J Am Chem Soc 95:7842–7850CrossRefGoogle Scholar
  235. Yoshida HA, Toscano NC (1994) Comparative effects of selected natural insecticides on Heliothis virescens (Lepidoptera: Noctuidae) larvae. J Econ Entomol 87:305–310Google Scholar
  236. Zhang D, Nair MG, Murry M, Zhang Z (1997) Insecticidal activity of indanomycin. J Antibiot (Tokyo) 50:617–620CrossRefGoogle Scholar

Copyright information

© Springer Japan 1999

Authors and Affiliations

  • István Ujváry
    • 1
  1. 1.Hungarian Academy of SciencesPlant Protection InstituteBudapestHungary

Personalised recommendations