Skip to main content

Abstract

Alkaloids, with more than 10,000 described, are one of the most diverse and prominent groups of natural products with pharmacological and toxicological importance (Harborne 1993). Plant extracts containing insecticidal alkaloids as bioactive constituents have played an important role in the abatement of insects of agricultural and public health importance for centuries. While the direct use of these substances has recently diminished, they continue to serve as leads for synthetic analogs and are also indispensable biochemical tools in mode of action studies. In recent years, the function of these alkaloids in the host plant has begun to unfold: it is now generally believed that the ecological role of these compounds, often acting in concert with other nonalkaloidal substances, is to provide a chemical defense against predators and pathogens in a sustained manner through multiple biological mechanisms (Wink 1993a; Brown and Trigo 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addor RW (1995) Insecticides. In: Godfrey CRA (Ed) Agrochemicals from natural products. Marcel Dekker, New York, pp 1–62

    Google Scholar 

  • Addor RW, Babcock TJ, Black BC, Brown DG, Diehl RE, Furch JA, Kameswaran V, Kamhi VM, Kremer KA, Kuhn DG, Lovell JB, Lowen GT, Miller TP, Peevey RM, Siddens JK, Treacy MF, Trotto SH, Wright DP Jr (1992) Insecticidal pyrroles: discovery and overview. In: Baker DR, Fenyes JG, Steffens JJ (Eds) Synthesis and chemistry of agrochemicals. III American Chemical Society, Washington, DC, pp 283–297

    Chapter  Google Scholar 

  • Albuquerque EX, Daly JW, Witkop B (1971) Batrachotoxin: chemistry and pharmacology. Science 172:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Anthoni U, Christophersen C, Madsen JØ, Wium-Andersen S, Jacobsen N (1980) Biologically active sulphur compounds from the green alga Chora globularis. Phytochemistry 19:1228–1229

    Article  CAS  Google Scholar 

  • Attygalle AB, McCormick KD, Blankespoor CL, Eisner T, Meinwald J (1993) Azamacrolides: a family of alkaloids form the pupal defensive secretion of a ladybird beetle (Epilachna varivestis). Proc Natl Acad Sci USA 90:5204–5208

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IT (1996) Methyl jasmonate-induced nicotine production in Nicotiana attenuata: inducing defenses in the field without wounding. Entomol Exp Appl 80:213–220

    Article  CAS  Google Scholar 

  • Baldwin IT, Zhang Z-P, Diad N, Ohnmeiss TE, McCloud ES, Gladys GY, Schmelz EA (1997) Quantification, correlations, and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta (Heidelb) 201:397–404

    Article  CAS  Google Scholar 

  • Barbour JD, Kennedy GG (1991) Role of steroidal glycoalkaloid a-tomatine in host-plant resistance of tomato to Colorado potato beetle. J Chem Ecol 17:989–1005

    Article  CAS  Google Scholar 

  • Bargar TM, Lett RM, Johnson PL, Hunter JE, Chang CP, Pernich DJ, Sabol MR, Dick MR (1995) Toxicity of pumiliotoxin 25 ID and synthetic analogs to the cotton pest Heliothis virescens. J Agric Food Chem 43:1044–1051

    Article  CAS  Google Scholar 

  • Barlow RB, Johnson O (1989) Relations between structure and nicotine-like activity: X-ray crystal structure analysis of (-)-cytisine and (-)-lobeline hydrochloride and a comparison with (-)-nicotine and other nicotine-like compounds. BrJ Pharmacol 98:799–808

    Article  CAS  Google Scholar 

  • Barton DHR, Jeger O, Prelog V, Woodward RB (1954) The constitutions of cevine and some related alkaloids. Experientia (Basel) 10:81–90

    Article  CAS  Google Scholar 

  • Bellows TS Jr, Morse JG (1993) Toxicity of insecticides used in citrus to Aphytis melinus DeBach (Hymenoptera: Aphelinidae) and Rhizobius lophanthae (Blaisd.) (Coleoptera: Coccinellidae). Can Entomol 125:987–994

    Article  Google Scholar 

  • Benn MH, Jacyno JM (1983) The toxicogy and pharmacology of diterpenoid alkaloids. In: Pelletier SW (Ed) Alkaloids. Chemical and biological perspectives. Vol 1. John Wiley & Sons, New York, pp 153–210

    Google Scholar 

  • Bergmann ED, Levinson ZH, Mechoulam R (1958) The toxicity of Veratrum and Solarium alkaloids to housefly larvae. J Insect Physiol 2:162–177

    Article  CAS  Google Scholar 

  • Beroza M (1951) Alkaloids from Tripterygium wilfordii Hook-wilforine and wilfordine. J Am Chem Soc 73:3656–3659

    Article  CAS  Google Scholar 

  • Beroza M, Bottger GT (1954) The insecticidal value of Tripterygium wilfordii. J Econ Entomol 47:188–189

    Google Scholar 

  • Birnbaum KB, Wiesner K, Jay EWK, Jay L (1971) Configuration of the ring A methoxyl in delphinine and aconitine. Tetrahedron Lett 867–870

    Google Scholar 

  • Black BC, Hollingworth RM, Ahammadsahib KI, Kukel CD, Donovan S (1994) Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles. Pestic Biochem Physiol 50:115–128

    Article  CAS  Google Scholar 

  • Blade RJ (1990) Some aspects of synthesis and structure-activity in insecticidal lipid amides. In: Crombie L (Ed) Recent advances in the chemistry of insect control, II. The Royal Society of Chemistry, London, pp 151–169

    Google Scholar 

  • Blade RJ, Burt PE, Hart RJ, Moss MDV (1985) The action of insecticidal isobutylamide compounds on the insect nervous system. Pestic Sci 16:554

    Google Scholar 

  • Blanchflower SE, Banks RM, Everett JR, Reading CJ (1991) New paraherquamide antibiotics with anthelmintic activity. J Antibiot (Tokyo) 44:492–497

    Article  CAS  PubMed  Google Scholar 

  • Blizzard TA, Marino G, Mrozik H, Fisher MH, Hoogsteen K, Springer JP (1989) Chemical modifications of paraherquamide. 1. Unusual reactions and absolute stereochemistry. J Org Chem 54:2657–2663

    Article  CAS  Google Scholar 

  • Blizzard TA, Margiatto G, Mrozik H, Schaeffer JM, Fisher MH (1991) Chemical modification of paraherquamide. 4. 1-N-Substituted analogs. Tetrahedron Lett 32:2441–2444

    Article  CAS  Google Scholar 

  • Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41:163–190

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR, Miller TA (1986) Sodium channel neurotoxins as probes of the knock down resistance mechanism. NeuroToxicology (Little Rock) 7:217–224

    CAS  Google Scholar 

  • Blum MS (1992) Ant venoms: chemical and pharmacological properties. J Toxicol Toxin Rev 11:115–164

    Article  CAS  Google Scholar 

  • Blum MS (1996) Chemistry and toxicology of arthropod alkaloids. In: Blum MS (Ed) Chemistry and toxicology of diverse classes of alkaloids. Alaken, Fort Collins, CO, pp 145–184

    Google Scholar 

  • Bringmann G, Rübenacker M, Jansen JR, Scheutzow D, AkéAssi L (1990a) Acetogenic isoquinoline alkaloids. 16. On the structure of the dioncophyllaceae alkaloids dioncophylline A (“triphyophylline”) and “O-methyl-triphyophylline”. Tetrahedron Lett 31:639–642

    Article  CAS  Google Scholar 

  • Bringmann G, Jansen JR, Reuscher H, Rübenacker M, Peters K, von Schnering HG (1990b) Acetogenic isoquinoline alkaloids. 17. First total synthesis of (-)-dioncophylline A (“triphyophylline”) and of selected stereoisomers: complete (revised) stereostructure. Tetrahedron Lett 31:643–646

    Article  CAS  Google Scholar 

  • Bringmann G, Pokorny F (1995) The naphthylisoquinoline alkaloids. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol 46. Academic Press, New York, pp 127–271

    Google Scholar 

  • Bringmann G, Gramatzki S, Grimm C, Proksch P (1992) Feeding deterrency and growth retarding activity of the naphthylisoquinoline alkaloid dioncophylline A against Spodoptera littoralis. Phytochemistry 31:3821–3825

    Article  CAS  Google Scholar 

  • Bringmann G, Holenz J, Wiesen B, Nugroho BW, Proksch P (1997) Dioncophylline A as a growth-retardant agent against the herbivorous insect Spodoptera littoralis: structure-activity relationships. J Nat Prod 60:342–437

    Article  CAS  PubMed  Google Scholar 

  • Brossi A, Pei X-F (1998) Biological activity of unnatural alkaloid enantiomers. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol 50. Academic Press, San Diego, pp 109–139

    Google Scholar 

  • Brown KS Jr, Trigo JR (1995) The ecological activity of alkaloids. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol 47. Academic Press, San Diego, pp 227–354

    Google Scholar 

  • Brown WV, Moore BP (1982) The defensive alkaloids of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae). Aust J Chem 35:1255–1261

    Article  CAS  Google Scholar 

  • Brüning R, Wagner H (1978) Übersicht über die Celastraceen-Inhaltsstoffe: Chemie, Chemotaxonomie, Biosynthese, Pharmakologie. Phytochemistry 17:1821–1858

    Article  Google Scholar 

  • Bush LP, Crowe MW (1989) Nicotiana alkaloids. In: Cheeke PR (Ed) Toxicants of plant origin. Vol I. Alkaloids. CRC Press, Boca Raton, FL, pp 87–107

    Google Scholar 

  • Campbell BC, Molyneux RJ, Jones KC (1987) Differential inhibition by castanospermine of various insect disaccharidases. J Chem Ecol 13:1759–1770

    Article  CAS  Google Scholar 

  • Carter GT, Nietsche JA, Goodman JJ, Torrey MJ, Dunne TS, Borders DB, Testa RT (1987) LL-F42248a, a novel chlorinated pyrrole antibiotic. J Antibiot (Tokyo) 40:233–236

    Article  CAS  Google Scholar 

  • Chuliá S, Ivorra MD, Cavé A, Cortés D, Noguera MA, D’Ocón MP (1995) Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat. J Pharm Pharmacol 47:647–650

    Article  PubMed  Google Scholar 

  • Codding PW (1983) Structural studies of sodium channel neurotoxins. 2. Crystal structure and absolute configuration of veratridine Perchlorate. J Am Chem Soc 105:3172–3176

    Article  CAS  Google Scholar 

  • Crombie L (1952) The structure of an insecticidal isobutylamide from pellitory root. Chem Ind(Lond) 1034–1035

    Google Scholar 

  • Crombie L, Fisher D (1985a) Synthons for general routes to natural insecticidal lipid isobutylamides. Tetrahedron Lett 26:2477–2480

    Article  CAS  Google Scholar 

  • Crombie L, Fisher D (1985b) Synthesis of natural polyene isobutylamides. Stereochemistry of the Wittig reactions. Tetrahedron Lett 26:2481–2484

    Article  CAS  Google Scholar 

  • Crombie L, Horsham MA, Blade RJ (1987) Synthetic approaches to isobutylamides of insecticidal interest. Tetrahedron Lett 28:4879–4882

    Article  CAS  Google Scholar 

  • Crosby DG (1971) Minor insecticides of plant origin. In: Jacobson M, Crosby DG (Eds) Naturally occurring insecticides. Marcel Dekker, New York, pp 177–239

    Google Scholar 

  • Daly JW, Spande TF (1986) Amphibian alkaloids: chemistry, pharmacology, and biology. In: Pelletier SW (Ed) Alkaloids: chemical and biological perspectives. Vol 4. John Wiley & Sons, New York, pp 1–273

    Google Scholar 

  • Davey AE, Schaeffer MJ, Taylor RJK (1992) Synthesis of the novel anti-leukaemic tetra-hydrocyclopentalblbenzofuran, rocaglamide and related synthetic studies. J Chem Soc Perkin Trans 1 2657–2666

    Article  Google Scholar 

  • Decker MW, Anderson DJ, Brioni JD, Donnelly-Roberts DL, Kang CH, O’Neill AB, Piattoni-Kaplan M, Swanson S, Sullivan JP (1995) Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 280:79–89

    Article  CAS  PubMed  Google Scholar 

  • Dell S, Holding MJ, Perrior TR (1990) The design and synthesis of simple putative analogues of insecticidal alkaloids. Abstracts, Seventh International Congress Pesticide Chemistry (IUPAC), Hamburg, Vol I, Abstr 01B-05, p 97

    Google Scholar 

  • Delle Monache FD, Marini Bettolo GB, Bernays EA (1984) Isolation of insect antifeedant alkaloids from Maytenus rigida (Celastraceae). Z Angew Entomol 97:406–414

    Article  CAS  Google Scholar 

  • Deslongchamps P, Bélanger A, Berney DJF, Borschberg H-J, Brousseau R, Doutheau A, Durand R, Katayama H, Lapalme R, Leturc DM, Liao C-C, MacLachlan FN, Maffrand J-P, Marazza F, Martino R, Moreau C, Ruest L, Saint-Laurent L, Saintonge R, Soucy P (1990) The total synthesis of (+)-ryanodol. Part I. General strategy and search for a convenient diene for the construction of a key tricyclic intermediate. Can J Chem 68:115–126

    Article  CAS  Google Scholar 

  • Devitt BD, Philogène BJR, Hinks CF (1980) Effects of veratrine, berberine, nicotine and atropine on developmental characteristics and survival of the dark-sided cutworm, Euxoa messoria (Lepidoptera: Noctuidae). Phytoprotection 61:88–102

    CAS  Google Scholar 

  • Dyke SF, Quessy SN (1981) Erythrina and related alkaloids. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol XVIII. Academic Press, San Diego, pp 1–98

    Google Scholar 

  • Ekpa O, Wheeler JW, Cokendolpher JC, Duffield RM (1984) N,N-Dimethyl-β-phenyl-ethylamine and bornyl esters from the harvestman Sclerobunus robustus (Arachnidae: Opiliones). Tetrahedron Lett 25:1315–1318

    Article  CAS  Google Scholar 

  • Elliott M (1985) Lipophilic insect control agents. In: Janes NF (Ed) Recent advances in the chemistry of insect control agents. The Royal Society of Chemistry, London, pp 73–102

    Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA, Sawicki RM (1986) Insecticidal amides with selective potency against a resistant (super-kdr) strain of houseflies (Musca domestica L.) Agric Biol Chem 50:1347–1349

    Article  CAS  Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA (1987) Synthesis and insecticidal activity of lipophilic amides. Part 1. Introductory survey, and discovery of an active synthetic compound. Pestic Sci 18:191–201

    Article  CAS  Google Scholar 

  • Elliott M, Farnham AW, Janes NF, Johnson DM, Pulman DA (1989) Synthesis and insecticidal activity of lipophilic amides. Part 7. Alternative aromatic groups for phenyl in 6-phenylhexa-dienamides. Pestic Sci 26:199–208

    Article  CAS  Google Scholar 

  • El Sayed KA, Dunbar DC, Perry TL, Wilkins SP, Hamann MT, Greenplate JT, Wideman MA (1997) Marine natural products as prototype insecticidal agents. J Agric Food Chem 45:2735–2739

    Article  Google Scholar 

  • Enzell CR, Wahlberg I, Aasen AJ (1977) Isoprenoids and alkaloids of tobacco. In: Herz W, Grisebach H, Kirby GW (Eds) Fortschritte der Chemie organischer Naturstoffe. Vol 34. Springer-Verlag, Wien, pp 1–79

    Chapter  Google Scholar 

  • Ewete F, Nicol RW, Hengsawad V, Sukumalanand P, Satasook C, Wiriyachitra P, Isman MB, Kahn Y, Duval F, Philogène BJR, Amason JT (1996) Insecticidal activity of Aglaia odorata extract and the active principle, rocaglamide, to the European corn borer, Ostrinia nubilalis Hübn. (Lep., Pyralidae). J Appi Entomol 120:483–88

    Article  Google Scholar 

  • Ezaki N, Shomura T, Koyama M, Niwa T, Kojima M, Inouye S, Itô T, Nida T (1981) New chlorinated nitro-pyrrole antibiotics, pyrrolomycin A and B (SF-2080 A and B). J Antibiot (Tokyo) 34:1363–1365

    Article  CAS  Google Scholar 

  • Fellows LE, Evans SV, Nash RJ, Bell EA (1986) Polyhydroxy-alkaloids as glycosidase inhibitors and their possible ecological role. In: Green MB, Hedin PA (Eds) Natural resistance of plants to pests. American Chemical Society, Washington, DC, pp 72–78

    Chapter  Google Scholar 

  • Fisher RA (1940) Insecticidal action of extracts of Veratrum viride. J Econ Entomol33:728–734

    CAS  Google Scholar 

  • Fodor GB, Colasanti B (1985) The pyridine and piperidine alkaloids: chemistry and pharmacology. In: Pelletier SW (Ed) Alkaloids: chemical and biological perspectives. Vol 3. John Wiley & Sons, New York, pp 1–273

    Google Scholar 

  • François G, Van Looveren M, Timperman G, Chimanuka B, Aké Assi L, Holenz J, Bringmann G (1996) Larvicidal activity of the naphthylisoquinoline alkaloid dioncophylline A against the malaria vector Anopheles stephensi. J Ethnopharmacol 54:125–130

    Article  PubMed  Google Scholar 

  • Gbewonyo WSK, Candy DJ, Abderson M (1993) Structure-activity relationships of insecticidal amides from Piper guineense root. Pestic Sci 37:57–66

    Article  CAS  Google Scholar 

  • Gfeller H, Schlunegger UP, Schaffiier U, Boevé J-L, Ujváry I (1995) Analysis of the chemical defense system in an insect larva by tandem mass spectrometry. J Mass Spectrom 30:1291–1295

    Article  CAS  Google Scholar 

  • Gloer JB (1995) Antiinsectan natural products from fungal sclerotia. Ace Chem Res 28:343–350

    Article  CAS  Google Scholar 

  • Gloer JB, Rinderknecht BL, Wicklow DT, Dowd PF (1989) Nominine: a new insecticidal indole diterpene from the sclerotia of Aspergillus nomius. J Org Chem 54:2530–2532

    Article  CAS  Google Scholar 

  • Götz M, Strunz GM (1973) Tuberostemonine and related compounds: the chemistry of the Stemona alkaloids. In: Wiesner K (Ed) MTP International review of science: organic chemistry, series one. Butterworths, London, pp 143–160

    Google Scholar 

  • González-Coloma A, Cabrera R, Socorro Monzón AR, Fraga BM (1993) Persea indica as a natural source of the insecticide ryanodol. Phytochemistry 34:397–400

    Article  Google Scholar 

  • Greenhill JV, Grayshan P (1992) The cevane group of Veratrum alkaloids. In: Brossi A, Cordell GA (Eds) The alkaloids: chemistry and pharmacology. Vol 41. Academic Press, San Diego, pp 177–237

    Google Scholar 

  • Greger H (1988) Comparative phytochemistry of the alkamides. In: Lam J, Breteler H, Amason T, Hansen L (Eds) Chemistry and biology of naturally-occurring acetylenes and related compounds (NOARC). Elsevier, Amsterdam, pp 159–178

    Google Scholar 

  • Greger H., Zechner G, Hofer O, Vajrodaya S (1996) Bioactive amides from Glycosmis species. J Nat Prod 59:1163–1168

    Article  CAS  PubMed  Google Scholar 

  • Güssregen B, Fuhr M, Nugroho BW, Wray V, Witte L, Proksch P (1997) New insecticidal rocaglamide derivatives from flowers of Aglaia odorata. Z Naturforsch 52C:339–344

    Google Scholar 

  • Gusovsky F, Padgett WL, Creveling CR, Daly JW (1992) Interaction of pumiliotoxin B with an “alkaloid-binding domain” on the voltage-dependent sodium channel. Mol Pharmacol 42:1104–1108

    CAS  PubMed  Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry. 4th edn. Academic Press, London, p 318

    Google Scholar 

  • Hardick DJ, Cooper G, Scott-Ward T, Blagbrough IS, Potter BVL, Wonnacott S (1995) Conversion of the sodium channel activator aconitine into a potent α7-selective nicotinic ligand. FEBS Lett 365:79–82

    Article  CAS  PubMed  Google Scholar 

  • Hardick DJ, Blagbrough IS, Cooper G, Potter BVL, Critchley T, Wonnacott S (1996) Nudicauline and elatine as potent norditerpenoid ligands at rat neural α-bungarotoxin binding sites: importance of the 2-(methylsuccinimido)benzoyl moiety for neuronal nicotinic acetylcholine receptor binding. J Med Chem 39:4860–4866

    Article  CAS  PubMed  Google Scholar 

  • Hare JD, Morse JG (1997) Toxicity, persistence, and potency of sabadilla alkaloid formulations to citrus thrips (Thysanoptera: Thripidae). J Econ Entomol 90:326–332

    CAS  Google Scholar 

  • Harper SH, Potter C, Gillham EM (1947) Annona species as insecticides. Ann Appl Biol 34:104–112

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Takiuchi K, Murao S, Arai M (1989) Structure and insertici dal activity of new indole alkaloids, okaramines A and B, from Pénicillium simplicissimum AK-40. Agric Biol Chem 53:461–469

    Article  CAS  Google Scholar 

  • Hayashi H, Fujiwara T, Murao S, Arai M (1991) Okaramine C, a new insecticidal indole alkaloid from Penicillium simplicissimum. Agric Biol Chem 55:3143–3145

    Article  CAS  Google Scholar 

  • Hill RK, Renbaum LA (1982) Asymmetric syntheses of the ladybug alkaloid adaline and 1-methyl-9-azabicyclo[3.3.1]nonan-3-one. Tetrahedron 38:1959–1963

    Article  CAS  Google Scholar 

  • Helmstedt B (1972) The ordeal bean of Old Calabar: the pageant of Physostigma venenosum in medicine. In: Swain T (Ed) Plants in the development of modern medicine. Harvard University Press, Cambridge, MA, pp 303–360

    Google Scholar 

  • Hopf HS (1952) Studies in the mode of action of insecticides. I. Injection experiments on the role of Cholinesterase inhibition. Ann Appi Biol 39:193–202

    Article  CAS  Google Scholar 

  • Isogai A, Horii T, Suzuki A, Murakoshi S, Ikeda K, Sato S, Tamura S (1975) Isolation and identification of nigragillin as a insecticidal metabolite produced by a Aspergillus niger. Agrie Biol Chem 39:739–740

    Article  CAS  Google Scholar 

  • Jackson KE (1941) Alkaloids of tobacco. Chem Rev 29:123–197

    Article  CAS  Google Scholar 

  • Jacobi PA, Lee K (1997) Total synthesis of (±)-stemoamide. J Am Chem Soc 119:3409–3410

    Article  CAS  Google Scholar 

  • Jacobsen N, Pedersen LEK (1983) Synthesis and insecticidal properties of derivatives of propane-1,3-dithiol (Analogues of the insecticidal derivatives of dithiolane and trithiane from the alga Chara globularis Thuillier) Pestic Sci 14:90–97

    Article  CAS  Google Scholar 

  • Jacobson M (1948) Herculin, a pungent insecticidal constituent of southern prickly ash bark. J Am Chem Soc 70:4234–4237

    Article  CAS  PubMed  Google Scholar 

  • Jacobson M (1949) The structure of pellitorine. J Am Chem Soc 71:366–367

    Article  CAS  PubMed  Google Scholar 

  • Jacobson M (1953) Pellitorine isomers. II. The synthesis of N-isobxxtyl-trans-2,trans-4-decadienamide. J Am Chem Soc 75:2584–2586

    Article  CAS  Google Scholar 

  • Jacobson M (1971) The unsaturated isobutylamides. In: Jacobson M, Crosby DG (eds) Naturally occurring insecticides. Marcel Dekker, New York, pp 137–176

    Google Scholar 

  • Jacobson M, Crosby DG (Eds) (1971) Naturally occurring insecticides. Marcel Dekker, New York, p 585

    Google Scholar 

  • Jacyno JM (1996) Chemistry and toxicology of the diterpenoid alkaloids. In: Blum MS (Ed) Chemistry and toxicology of diverse classes of alkaloids. Alaken, Fort Collins, CO, pp 301–336

    Google Scholar 

  • Janprasert J, Satasook C, Sukumalanand P, Champagne DE, Isman MB, Wiriyachitra P, Towers GHN (1993) Rocaglamide, a natural benzofiiran insecticide from Aglaia odorata. Phytochemistry 32:67–69

    Article  Google Scholar 

  • Jefferies PR, Toia RF, Brannigan B, Pessah I, Casida JE (1992) Ryania insecticide: analysis and biological activity of 10 natural ryanoids. J Agrie Food Chem 40:142–146

    Article  CAS  Google Scholar 

  • Jefferies PR, Casida JE (1994) Ryanoid chemistry and action. In: Hedin PA, Menn J J, Hollingworth RM (Eds) Natural and engineered pest management agents. American Chemical Society, Washington, DC, pp 130–144

    Google Scholar 

  • Jefferies PR, Yu P, Casida JE (1997) Structural modifications increase the insecticidal activity of ryanodine. Pestic Sci 51:33–38

    Article  CAS  Google Scholar 

  • Jennings KR, Brown DG, Wright DP Jr (1986) Methyllycaconitine, a naturally occurring insecticide with a high affinity for the insect cholinergic receptor. Experientia (Basel) 42:611–613

    Article  CAS  Google Scholar 

  • Jones TH, Blum MS (1983) Arthropod alkaloids: distribution, functions, and chemistry. In: Pelletier SW (Ed) Alkaloids: chemical and biological perspectives. Vol 1. John Wiley & Sons, New York, pp 33–84

    Google Scholar 

  • Karadsheh N, Kussie P, Linthicum DS (1991) Inhibition of acetylcholinesterase by caffeine, anabasine, methyl pyrrolidine and their derivatives. Toxicol Lett 55:335–342

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Ichimaru M, Hashimoto Y, Mitsudera H (1989) Guinesine-A,-B and-C: new sulfur containing insecticidal alkaloids from Cassipourea guianensis. Tetrahedron Lett 30:3671–3674

    Article  CAS  Google Scholar 

  • Keukens EAJ, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WMF, de Kruijff B (1995) Molecular basis of glycoalkalod induced membrane disruption. Biochim Biophys Acta Biomembranes 1240:216–228

    Article  Google Scholar 

  • King AG, Meinwald J (1996) Review of the defensive chemistry of coccinellids. Chem Rev 96:1105–1122

    Article  CAS  Google Scholar 

  • King ML, Chiang C-C, Ling H-C, Fujita E, Ochiai M, McPhail AT (1982) X-Ray crystal structure of rocaglamide, a novel antileukemic lH-cyclopenta[b]benzofuran from Aglaia elliptifolia. J Chem Soc Chem Commun 1150–1151

    Google Scholar 

  • Kinghorn AD, Balandrin MF (1984) Quinolizidine alkaloids of the Leguminosae: structural types, analysis, chemotaxonomy, and toxicological activities. In: Pelletier SW (Ed) Alkaloids, chemical and biological perspectives. Vol 2. John Wiley & Sons, New York, pp 105–148

    Google Scholar 

  • Klocke JA (1989) Plant compounds as sources and models of insect-control agents. In: Wagner H, Hikino H, Farnsworth NR (Eds) Economic and medicinal plant research. Vol 3. Academic Press, London, pp 103–144

    Chapter  Google Scholar 

  • Konishi K (1972) Nereistoxin and its relatives. In: Tahori AS (Ed) Pesticide chemistry. Vol 1. Insecticides. Gordon and Breach, New York, pp 179–189

    Google Scholar 

  • Kosower EM (1983) A hypothesis for the mechanism of sodium channel opening by batrachotoxin and related toxins. FEBS Lett 163:161–164

    Article  CAS  PubMed  Google Scholar 

  • Koyama M, Ezaki N, Tsuruoka T, Inouye S (1983) Structural studies on pyrrolomycins C, D and E. J Antibiot (Tokyo) 36:1483–1489

    Article  CAS  Google Scholar 

  • Kubo I, Matsumoto T, Klocke JA, Kamikawa T (1984) Molluscicidal and insecticidal activities of isobutylamides isolated from Fagara macrophylla. Experientia (Basel) 40:340–341

    Article  CAS  Google Scholar 

  • Kuhn DG (1997) Structure-activity relationships for insecticidal pyrroles. In: Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (Eds) Phytochemicals for pest control. American Chemical Society, Washington, DC, pp 195–205

    Chapter  Google Scholar 

  • Kuhr RJ, Dorough HW (1976) Carbamate insecticides: chemistry, biochemistry, and toxicology. CRC Press, Cleveland, OH, p 301

    Google Scholar 

  • Kukel CF, Jennings KR (1994) Delphinium alkaloids as inhibitors of α-bungarotoxin binding to rat and insect neural membranes. Can J Physiol Pharmacol 72:104–107

    Article  CAS  PubMed  Google Scholar 

  • Kukel CF, Jennings KR (1995) Erratum. Can J Physiol Pharmacol 73:145

    Article  CAS  Google Scholar 

  • Kupchan SM, Flacke WE (1967) Hypotensive Veratrum alkaloids. In: SchÜttler E (Ed) Antihypertensive agents. Academic Press, New York, pp 429–458

    Google Scholar 

  • Leal WS, Zarbin PHG, Wojtasek H, Kuwahara S, Hasegawa M, Ueda Y (1997) Medicinal alkaloid as a sex pheromone. Nature (Lond) 385:213

    Article  CAS  Google Scholar 

  • Leboeuf M, Cavé A, Bhaumik PK, Mukherjee B, Mukherjee R (1982) The phytochemistry of the Annonaceae. Phytochemistry 21:2783–2813

    Article  CAS  Google Scholar 

  • Lee BH, Clothier MF (1997) Conversion of marcfortine A to paraherquamide A via paraherquamide B. The first formal synthesis of paraherquamide A. J Org Chem 62:1795–1798

    CAS  Google Scholar 

  • Leete E (1983) Biosynthesis and metabolism of the tobacco alkaloids. In: Pelletier SW (Ed) Alkaloids, chemical and biological perspectives. Vol 1. John Wiley & Sons, New York, pp 85–152

    Google Scholar 

  • Levinson HZ (1976) The defensive role of alkaloids in insects and plants. Experientia (Basel) 32:408–411

    Article  CAS  Google Scholar 

  • Li Ya, Strunz GM, Calhoun LA (1990) Sesquiterpene alkaloids from Tripterygium wilfordii (Hook): a nuclear magnetic resonance study of l-desacetylwilfordine, 1-des-acetylwilfortrine, and 2-debenzoyl-2-nicotinoylwilforine. Can J Chem 68:371–374

    Article  Google Scholar 

  • Liesch JM, Wichmann CF (1990) Novel antinematodal and antiparasitic agents from Penicillium charlesii. II. Structure determination of paraherquamides B, C, D, E, F, and G. J Antibiot (Tokyo) 43:1380–1386

    Article  CAS  Google Scholar 

  • Liu M-Y, Latli B, Casida JE (1995) Imidacloprid binding site in Musca nicotinic acetylcholine receptor: interactions with physostigmine and a variety of nicotinic agonists with chloropyridyl and chlorothiazolyl substituents. Pestic Biochem Physiol 52:170–181

    Article  CAS  Google Scholar 

  • Mclnerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DRJ, Engelhardt LM, White AH (1991) Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54:774–784

    Article  Google Scholar 

  • McLaughlin JL, Zeng L, Oberlies NH, Alfonso D, Johnson HA, Cummings B A (1997) Annonaceous acetogenins as new natural pesticides: recent progress. In: Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (Eds) Phytochemicals for pest control. American Chemical Society, Washington, DC, pp 117–133

    Chapter  Google Scholar 

  • Meinwald YC, Meinwald J, Eisner T (1966) l,2-Dialkyl-4-(3H)-quinazolinones in the defensive secretion of a millipede (Glomeris marginata). Science 154:390–391

    Article  CAS  PubMed  Google Scholar 

  • Meisters A, Wailes PC (1966a) Synthesis of four geometrical isomers of hexadeca-2,6,8, 12-tetraenoic acid. The insecticidal properties of their isobutylamides. Aust J Chem 19:1207–1213

    Article  CAS  Google Scholar 

  • Meisters A, Wailes PC (1966b) The isobutylamides of 7-phenylhepta-2,4-dienoic acid, 7-phenylhepta-2,4,6-trienoic acid, and p-(2-phenylethyl)benzoic acid. Aust J Chem 19:1215–1220

    Article  CAS  Google Scholar 

  • Metcalf RL (1955) Nicotine, nornicotine, and anabasine. In: Metcalf R (Ed) Organic insecticides: their chemistry and mode of action. Interscience, New York, pp 1–21

    Google Scholar 

  • Mitsudera H, Kamikado T, Uneme H, Kono Y (1990a) Synthesis and biological activity of 4-alkylthio-l,2-dithiolanes and related compounds. Agrie Biol Chem 54:1719–1722

    Article  CAS  Google Scholar 

  • Mitsudera H, Kamikado T, Uneme H, Manabe Y (1990b) Synthesis and biological activity of 5-alkylthio-l,3-dithianes. Agric Biol Chem 54:1723–1730

    Article  CAS  Google Scholar 

  • Mitsudera H, Uneme H, Okada Y, Numata M, Kato A (1990c) Synthesis of dl-guinesines and related compounds. J Heterocycl Chem 27:1361–1367

    Article  CAS  Google Scholar 

  • Miyakado M, Nakayama I, Yoshioka H (1980) Insecticidal joint action of pipercide and co-occurring compounds isolated from Piper nigrum L. Agric Biol Chem 44:1701–1703

    Article  CAS  Google Scholar 

  • Miyakado M, Nakayama I, Inoue A, Hatakoshi M, Ohno N (1985a) Chemistry and insecticidal activities of Piperaceae amides and their synthetic analogues. J Pestic Sci 10:11–17

    Article  CAS  Google Scholar 

  • Miyakado M, Nakayama I, Inoue A, Hatakoshi M, Ohno N (1985b) Insecticidal activities of phenoxy analogues of dihydropipercide. J Pestic Sci 10:25–30

    Article  CAS  Google Scholar 

  • Miyakado M, Nakayama I, Ohno N (1989) Insecticidal unsaturated isobutylamides. From natural products to agrochemical leads. In: Arnason JT, Philogène BJR, Morand P (Eds) Insecticides of plant origin. American Chemical Society, Washington,DC, pp 173–187

    Chapter  Google Scholar 

  • Molyneux RJ (1993) Isolation, characterization and analysis of polyhydroxy alkaloids. Phytochem Anal 4:193–204

    Article  CAS  Google Scholar 

  • Mroue M, Alam M (1991) Crooksiine, a bisindole alkaloid from Haplophyton crooksii. Phytochemistry 30:1741–1744

    Article  CAS  Google Scholar 

  • Mukhamedzhanov SZ, Aslanov KA, Sadykov AS, Leontev VB, Kiryukhin VK (1968) The structure of anabasamine. Khim Prir Soedin 4:158–161 (in Russian)

    CAS  Google Scholar 

  • Murao S, Hayashi H (1986) Physostigmine and N 8-norphysostigmine, insecticidal compounds, from Streptomyces sp. Agric Biol Chem 50:523–524

    Article  CAS  Google Scholar 

  • Murray CL, Quaglia M, Arnason JT, Morris CE (1994) A putative nicotine pump at the metabolic blood-brain barrier of the tobacco hornworm. J Neurobiol 25:23–34

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Shiomi K, Iinuma H, Naganawa H, Obata T, Takeuchi T, Umezawa H, Takeuchi Y, Iitaka Y (1987) Isolation and characterization of a new antibiotic, dioxapyrrolomycin, related to pyrrolomycins. J Antibiot (Tokyo) 40:899–903

    Article  CAS  Google Scholar 

  • Nathanson JA (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226:184–187

    Article  CAS  PubMed  Google Scholar 

  • Nathanson JA, Hunnicutt EJ, Kantham L, Scavone C (1993) Cocaine as a naturally occurring insecticide. Proc Natl Acad Sci USA 90:9645–9648

    Article  CAS  PubMed  Google Scholar 

  • Negherbon WO (1959) Nicotine. In: Handbook of toxicology. Vol IH: Insecticides. A compendium. WB Saunders, Philadelphia, pp 508–519

    Google Scholar 

  • Nicholson RA, Botham RP, Blade RJ (1985) The interaction of sodium channel directed neurotoxicants and a novel insecticidal isobutylamide with central nerve terminals prepared from the cockroach (Periplaneta americana). Pestic Sci 16:554–555

    Article  Google Scholar 

  • Nugroho BW, Edrada RA, GÜssregen B, Wray V, Witte L, Proksch P (1997) Insecticidal rocaglamide derivatives from Aglaia duppereana. Phytochemistry 44:1455–1461

    Article  CAS  Google Scholar 

  • Ninnata A, Ibuka T (1987) Alkaloids from ants and other insects. In: Brossi A (Ed) The alkaloids: chemistry and pharmacology. Vol 31. Academic Press, San Diego, pp 193–315

    Google Scholar 

  • Okaichi T, Hashimoto Y (1962) The structure of nereistoxin. Agrie Biol Chem 26:224–227

    CAS  Google Scholar 

  • Ondeyka JG, Goegelman RT, Schaeffer JM, Kelemen L, Zitano L (1990) Novel antinematodal and antiparasitic agents from Penicillium charlesii. I. Fermentation, isolation and biological activity. J Antibiot (Tokyo) 43:1375–1379

    Article  CAS  Google Scholar 

  • Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A, Shoop WL, Slayton L, Dombrowski AW, Polishook JD, Ostlind DA, Tsou NN, Ball RG, Singh SB (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. Isolation, structure determination, and chemical transformations. J Am Chem Soc 119:8809–8816

    Article  CAS  Google Scholar 

  • Orechoff A, Menschikoff G (1931) Über die Alkaloide von Anabasis aphylla L. Ber Dtsch Chem Ges 64:266–274

    Article  Google Scholar 

  • Ottea JA, Payne GT, Soderlund DM (1990) Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel. J Agrie Food Chem 38:1724–1728

    Article  CAS  Google Scholar 

  • Pauron D, Barhanin J, Amichot M, Pralavorio M, Bergé J-B, Lazdunski M (1989) Pyrethroid receptor in the insect Na+ channel: alteration of its properties in pyrethroid-resistant flies. Biochemistry 28:1673–1677

    Article  CAS  Google Scholar 

  • Pelletier PJ, Caventou JB (1820) Examen chimique de plusieurs végétaux de la famille des colchicées, et du principe actif qu’ils renferment. [Cévadille (veratrum sabadilla); hellébore blanc (veratrum album); colchique commun (colchicum autumnale)]. Ann Chim Phys 14:69–83

    Google Scholar 

  • Pelletier SW (1983) The nature and definition of an alkaloid. In: Pelletier SW (Ed) Alkaloids: chemical and biological perspectives. Vol 1. John Wiley & Sons, New York, pp 1–31

    Google Scholar 

  • Pelletier SW, Mody NV, Varughese KI, Maddry JA, Desai HK (1981) Structure revision of 37 lycoctonine-related diterpenoid alkaloids. J Am Chem Soc 103:6536–6538

    Article  CAS  Google Scholar 

  • Pelletier SW, Mody NV (1979) The structure and synthesis of C19-diterpenoid alkaloids. In: Manske RHF, Rodrigo RGA (Eds) The alkaloids: chemistry and physiology. Vol XVII. Academic Press, New York, pp 1–103

    Google Scholar 

  • Pinner A (1893) Ueber Nicotin. Die Constitution des Alkaloids. Ber Dtsch Chem Ges 26:292–305

    Article  Google Scholar 

  • Posselt W, Reimann L (1828) Chemische Untersuchung des Tabaks und Darstellung des eigentümlichen wirksamen Princips dieser Pflanze. Geiger’s Mag Parmac 24:138–161

    Google Scholar 

  • Rae ID, Rosenberger M, Szabo AG, Willis CR, Yates P, Zacharias DE, Jeffrey GA, Douglas B, Kirkpatrick JL, Weisbach JA (1967) Haplophytine. J Am Chem Soc 89:3061–3062

    Article  CAS  Google Scholar 

  • Roddick JG (1989) The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry 28:2631–2634

    Article  CAS  Google Scholar 

  • Rogers EF, Koniuszy FR, Shavel JJ, Folkers K (1948) Plant insecticides. I. Ryanodine, a new alkaloid from Ryania speciosa Vahl. J Am Chem Soc 70:3086–3088

    Article  CAS  PubMed  Google Scholar 

  • Rogers EF, Snyder HR, Fischer RF (1952) Plant insecticides. II. The alkaloids of Haplophyton cimicidum. J Am Chem Soc 74:1987–1989

    Article  CAS  Google Scholar 

  • Saitoh F, Noma M, Kawashima N (1985) The alkaloid contents of sixty Nicotiana species. Phytochemistry 24:477–480

    Article  CAS  Google Scholar 

  • Sakai M, Sato Y (1972) Metabolic conversion of the nereistoxin-related compounds into nereistoxin as a factor of their insecticidal action. In: Tahori AS (Ed) Pesticide chemistry. Vol 1. Insecticides. Gordon and Breach, New York, pp 455–467

    Google Scholar 

  • Sakata K, Aoki K, Chang C-F, Sakurai A, Tamura S, Murakoshi S (1978) Stemospironine, a new insecticidal alkaloid of Stemona japónica Miq. Isolation, structural determination and activity. Agric Biol Chem 42:457–463

    Article  CAS  Google Scholar 

  • Satasook C, Isman MB, Wiriyachitra P (1992) Activity of rocaglamide, an insecticidal natural product, against the variegated cutworm, Peridroma saucia (Lepidoptera: Noctuidae). Pestic Sci 36:53–58

    Article  CAS  Google Scholar 

  • Saxena RC, Harshan V, Saxena A, Sukumaran P, Sharma MC, Lakshamana Kumar M (1993) Larvicidal and chemosterilant activity of Annona squamosa alkaloids against Anopheles stephensi. J Am Mosq Control Assoc 9:84–87

    CAS  PubMed  Google Scholar 

  • Schaffner U, Boevé J-L, Gfeller H, Schlunegger UP (1994) Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20:3233–3249

    Article  CAS  Google Scholar 

  • Schildknecht H, Maschwitz U, Wenneis WF (1967) Neue Stoffe aus dem Wehrsekret der Diplopodengattung Glomeris. Naturwissenschaften 54:196–197

    Article  CAS  PubMed  Google Scholar 

  • Schmeller T, Latz-Brüning B, Wink M (1997) Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44:257–266

    Article  CAS  PubMed  Google Scholar 

  • Schmeltz I (1971) Nicotine and other tobacco alkaloids. In: Jacobson M, Crosby DG (Eds) Naturally occurring insecticides. Marcel Dekker, New York, pp 99–1360

    Google Scholar 

  • Schmitt M, Turberg A, Londershausen M, Dora A (1996) Binding sites for Ca2+-channel effectors and ryanodine in Periplaneta americana-possible targets for new insecticides. Pestic Sci 48:375–385

    Article  CAS  Google Scholar 

  • Schreiber K (1968) Steroid alkaloids: the Solanum group. In: Manske RHF (Ed) The alkaloids: chemistry and physiology. Vol X. Academic Press, New York, pp 1–192

    Chapter  Google Scholar 

  • Schröder F, Franke S, Francke W, Baumann H, Kaib M, Pasteéis JM, Daloze D (1996) A new family of tricyclic alkaloids from Myrmicaria ants. Tetrahedron 52:13539–13546

    Article  Google Scholar 

  • Scofield AM, Witham P, Nash RJ, Kite GC, Fellows LE (1995) Castanospermine and other polyhydroxy alkaloids as inhibitors of insect glycosidases. Comp Biochem Physiol 112A:187–196

    Article  CAS  Google Scholar 

  • Seeman JI (1984) Recent studies in nicotine chemistry. Conformational analysis, chemical reactivity studies, and theoretical modeling. Heterocycles (Tokyo) 22:165–193

    Article  CAS  Google Scholar 

  • Severson RF, Huesing JE, Jones D, Arrendale RF, Sisson VA (1988) Identification of tobacco hornworm antibiosis factor from cuticulae of Repandae section of Nicotiana species. J Chem Ecol 14:1485–1494

    Article  CAS  Google Scholar 

  • Sharma RP, Salunkhe DK (1989) Solanum glycoalkaloids. In: Cheeke PR (Ed) Toxicants of plant origin. Vol 1. Alkaloids. CRC Press, Boca Raton,FL, pp 179–236

    Google Scholar 

  • Shepard HH (1951a) Plant products: nicotine and other alkaloids. In: Shepard HH (Ed) The chemistry and action of insecticides. McGraw-Hill, New York, pp 115–143

    Google Scholar 

  • Shepard HH (1951b) Pyrethrins, rotenone, and miscellaneous plant extractives. In: Shepard HH (Ed) The chemistry and action of insecticides. McGraw-Hill, New York, pp 144–190

    Google Scholar 

  • Sherby SM, Eldefrawi AT, David JA, Sattelle DB, Eldefrawi ME (1986) Interactions of charatoxins and nereistoxin with the nicotinic acetylcholine receptors of insect CNS and Torpedo electric organ. Arch Insect Biochem Physiol 3:431–445

    Article  CAS  Google Scholar 

  • Shinozaki H, Ishida M (1985) Inhibitory actions of tuberstemonine on the excitatory transmission at the crayfish neuromuscular junction. Brain Res 334:33–40

    Article  CAS  PubMed  Google Scholar 

  • Smith CR, Richardson CH, Shepard HH (1930) Neonicotine and certain other derivatives of the dipyridyls as insecticides. J Econ Entomol 23:863–867

    CAS  Google Scholar 

  • Smith RM (1977) The Celastraceae alkaloids. In: Manske RHF (Ed) The alkaloids: chemistry and physiology. Vol 16. Academic Press, New York, pp 215–248

    Google Scholar 

  • Smolanoff J, Kluge AF, Meinwald J, McPhail A, Miller RW, Hicks K, Eisner T (1975) Polyzonimine: a novel terpenoid insect repellent produced by a milliped. Science 188:734–736

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SN, Przybylska M (1970) The crystal structure of ryanodol p-bromobenzyl ether. Acta Crystallogr B 26:707–715

    Article  CAS  Google Scholar 

  • Staub GM, Gloer JB, Wicklow DT, Dowd PF (1992) Aspernomine: a cytotoxic antiinsectan metabolite with a novel ring system from the sclerotia of Aspergillus nomius. J Am Chem Soc 114:1015–1017

    Article  CAS  Google Scholar 

  • Staub GM, Gloer KB, Gloer JB, Wicklow DT, Dowd PF (1993) New paspalinine derivatives with antiinsectan activity from the sclerotia of Aspergillus nomius. Tetrahedron Lett 34:2569–2572

    Article  CAS  Google Scholar 

  • Stedman E, Barger G (1925) Physostigmine (eserine). Part HI. J Chem Soc 127:247–258

    Article  CAS  Google Scholar 

  • Strunz GM, Finlay H (1994) Concise, efficient new synthesis of pipercide, an insecticidal unsaturated amide from Piper nigrum, and related compounds. Tetrahedron 50:11113–11122

    Article  CAS  Google Scholar 

  • Su HCF (1985) N-Isobutylamides. In: Kerkut GA, Gilbert LI (Eds) Comprehensive insect physiology, biochemistry and pharmacology. Vol 12. Insect control. Pergamon Press, Oxford, pp 273–289

    Google Scholar 

  • Sutko JL, Airey JA, Welch W, Ruest L (1997) The pharmacology of ryanodine and related compounds. Pharmacol Rev 49:53–98

    CAS  PubMed  Google Scholar 

  • Swingle WT, Haller HL, Siegler EH, Swingle MC (1941) A Chinese insecticidal plant, Tripterygium wilfordii, introduced into the United States. Science 93:60–61

    Article  CAS  PubMed  Google Scholar 

  • Tattersfield F, Gimingham CT, Morris HM (1926) Studies on contact insecticides. Part IV. A quantitative examination of the toxicity of certain plants and plant products to Aphis rumicis L. (the bean aphis). Ann Appl Biol 13:424–445

    Article  CAS  Google Scholar 

  • Thomas EJ (1994) Approaches to the synthesis of insecticidal compounds. In: Briggs GG (Ed) Advances in the chemistry of insect control. DL Royal Society of Chemistry, Cambridge, UK, pp 223–237

    Google Scholar 

  • Toia RF (1990) Ant secretions as a source of natural product models for possible pest control agents. In: Casida JE (Ed) Pesticides and alternatives: innovative chemical and biological approaches to pest control. Elsevier Science, Amsterdam, pp 301–309

    Google Scholar 

  • Tokuyama T, Daly JW (1983) Sterodial alkaloids (batrachotoxins and 4β-hydroxy-batrachotoxins), “indole alkaloids” (calycanthine and chimonanthine) and a piperidinyl-dipyridine alkaloid (noranabasamine) in skin extracts from the Colombian poison-dart frog Phyllobates terribilis (Dendrobatidae). Tetrahedron 39:41–47

    Article  CAS  Google Scholar 

  • Trost BM, Greenspan PD, Yang BV, Saulnier MG (1990) An unusual oxidative cyclization. A synthesis and absolute stereochemical assignment of (-J-rocaglamide. J Am Chem Soc 112:9022–9024

    Article  CAS  Google Scholar 

  • Tsao R, Eto M (1989) Chemical and photochemical transformation of the insecticide cartap hydrochloride into nereistoxin. J Pestic Sci 14:47–51

    Article  CAS  Google Scholar 

  • Tursch B, Daloze D, Dupont M, Pasteeis JM, Tricot M-C (1971) A defense alkaloid from a carnivorous beetle. Experientia (Basel) 27:1380–1381

    Article  CAS  Google Scholar 

  • Tursch B, Braekman JC, Daloze D, Hootele C, Losman D, Karlsson R, Pasteéis JM (1973) Chemical ecology of arthropods, VI, adaline a novel alkaloid from Adalia bipunctata L. (Coleóptera, Coccinellidae). Tetrahedron Lett 201–202

    Google Scholar 

  • Ujváry I, Eya BK, Grendell RL, Toia RF, Casida JE (1991) Insecticidal activity of various 3-acyl and other derivatives of veracevine relative to the Veratrum alkaloids veratridine and cevadine. J Agrie Food Chem 39:1875–1881

    Article  Google Scholar 

  • Ujváry I, Polgar L, Darvas L, Casida JE (1995) Non-steroidal analogues of veratridine: model-based design, synthesis and insecticidal activity. Pestic Sci 44:95–102

    Article  Google Scholar 

  • Ujváry I, Casida JE (1997) Partial synthesis of 3-0-vanilloylveracevine, an insecticidal alkaloid from Schoenocaulon officinale. Phytochemistry 44:1257–1260

    Article  PubMed  Google Scholar 

  • Usherwood PNR, Vais H (1995) Towards the development of ryanoid insecticides with low mammalian toxicity. Toxicol Lett 82/83:247–254

    Article  CAS  Google Scholar 

  • Wada K, Munakata K (1967) An insecticidal alkaloid, cocculolidine from Cocculus trilobus DC. Part I. The isolation and the insecticidal activity of cocculolidine. Agric Biol Chem 31:336–339

    Article  CAS  Google Scholar 

  • Wada K, Munakata K (1968) Naturally occurring insect control chemicals. Isoboldine, a feeding inhibitor, and cocculolidine, an insecticide in the leaves of Cocculus trilobus DC. J Agrie Food Chem 16:471–174

    Article  CAS  Google Scholar 

  • Wada K, Marumo S, Munakata K (1966) An insecticidal alkaloid, cocculolidine from Cocculus trilobus. Tetrahedron Lett 5179–5184

    Google Scholar 

  • Wada K, Marumo S, Munakata K (1967) An insecticidal alkaloid, cocculolidine from Cocculus trilobus DC. Part H. The structure of cocculolidine. Agrie Biol Chem 31:452–460

    Article  CAS  Google Scholar 

  • Wada K, Marumo S, Munakata K (1968) An insecticidal alkaloid, cocculolidine from Cocculus trilobus DC. Part DL The stereochemistry of cocculolidine. Agrie Biol Chem 32:1187–1189

    Article  CAS  Google Scholar 

  • Waterhouse AL, Holden I, Casida JE (1984) 9,21-Didehydroryanodine: a new principal toxic constituent of the botanical insecticide Ryania. J Chem Soc Chem Commun 1265–1266

    Google Scholar 

  • Waterhouse AL, Pessah IN, Francini AO, Casida JE (1987) Structural aspects of ryanodine action and selectivity. J Med Chem 30:710–716

    Article  CAS  PubMed  Google Scholar 

  • Wheeler JW, Olubajo O, Storm CB, Duffield RM (1981) Anabaseine: venom alkaloid of Aphaenogaster ants. Science 211:1051–1052

    Article  CAS  PubMed  Google Scholar 

  • Whyte AC, Gloer JB, Wicklow DT, Dowd PF (1996) Sclerotiamide: a new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. J Nat Prod 59:1093–1095

    Article  CAS  PubMed  Google Scholar 

  • Wicklow DT, Dowd PF, Gloer JB (1994) Antiinsectan effects of Aspergillus metabolites. In: Powell KA, Renwick A, Peberdy JF (Eds) The genus Aspergillus: from taxonomy and genetics to industrial application. Plenum Press, New York, pp 93–114

    Google Scholar 

  • Wieland H, Dragendorff O (1929) Die Konstitution der Lobelia-Alkaloide. Ann Chem 473:83–102

    Article  CAS  Google Scholar 

  • Wiesner K (1972) The structure of ryanodine. Adv Org Chem 8:295–316.

    CAS  Google Scholar 

  • Wink M (1993a) Allelochemical properties or the raison d’etre of alkaloids. In: Cordell GA (Ed) The alkaloids: chemistry and pharmacology. Vol 43. Academic Press, San Diego, pp 1–118

    Google Scholar 

  • Wink M (1993b) Production and application of phytochemicals from an agricultural perspective. In: van Beek TA, Breteler H (Eds) Phytochemistry and agriculture. Clarendon Press, Oxford, pp 171–213

    Google Scholar 

  • Winchester B (1992) Natural and synthetic inhibitors of glycosidases. Biochem Soc Trans 20:699–705

    CAS  PubMed  Google Scholar 

  • Witkop B, Gössinger E (1983) Amphibian alkaloids. In: Brossi A(Ed) The alkaloids: chemistry and pharmacology. Vol XXL Academic Press, New York, pp 139–253

    Chapter  Google Scholar 

  • Xie Y, McHugh T, McKay J, Jones GS Jr, Loring RH (1996) Evidence that a nereistoxin metabolite, and not nereistoxin itself, reduces neuronal nicotinic receptors: studies in the whole chick ciliary ganglion, on isolated neurons and immunoprecipitated receptors. J Pharmacol Exp Ther 276:169–177

    CAS  PubMed  Google Scholar 

  • Yamada K, Shizuri Y, Hirata Y (1978) Isolation and structures of a new alkaloid alatamine and an insecticidal alkaloid wilfordine from Euonymus alatus forma striatus (Thunb.) Makino. Tetrahedron 34:1915–1920

    Article  CAS  Google Scholar 

  • Yamamoto I (1965) Nicotinoids as insecticides. In: Metcalf RL (Ed) Advances in pest control research. Vol VL John Wiley & Sons, New York, pp 231–260

    Google Scholar 

  • Yamazaki M, Okuyama E, Kobayashi M, Inoue H (1981) The structure of paraherquamide, a toxic metabolite from Pénicillium paraherquei. Tetrahedron Lett 22:135–136

    Article  CAS  Google Scholar 

  • Yano K, Oono J, Mogi K, Asaoka T, Nakashima T (1987) Pyrroxamycin, a new antibiotic. Taxonomy, fermentation, isolation, structure determination and biological properties. J Antibiot (Tokyo) 40:961–969

    Article  CAS  Google Scholar 

  • Yates P, MacLachlan FN, Rae ID, Rosenberg M, Szabo AG, Willis CR, Cava MP, Behforouz M, Lakshmikantham MV, Zeiger W (1973) Haplophytine. A novel type of indole alkaloid. J Am Chem Soc 95:7842–7850

    Article  CAS  Google Scholar 

  • Yoshida HA, Toscano NC (1994) Comparative effects of selected natural insecticides on Heliothis virescens (Lepidoptera: Noctuidae) larvae. J Econ Entomol 87:305–310

    CAS  Google Scholar 

  • Zhang D, Nair MG, Murry M, Zhang Z (1997) Insecticidal activity of indanomycin. J Antibiot (Tokyo) 50:617–620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this chapter

Cite this chapter

Ujváry, I. (1999). Nicotine and Other Insecticidal Alkaloids. In: Yamamoto, I., Casida, J.E. (eds) Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67933-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67933-2_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68011-6

  • Online ISBN: 978-4-431-67933-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics