The Action of Nicotine in the Mammalian Brain

  • Satoshi Fujii
  • Elisabeth C. Walcott
  • Katumi Sumikawa


Acetylcholine (ACh) is one of the predominant neurotransmitters in the brain. The majority of cholinergic cells are found in the medial septal nucleus, the basal forebrain, the striatum, and the brainstem (Struble et al. 1986). The major projection areas include cortex, hippocampus, striatum, substantia nigra, and medial habenula (Butcher 1995; Woolf et al. 1984). ACh is involved in the regulation of cortical arousal (Semba 1991), attention (Murphy and Sillito 1991), and sleep-wake cycles (Hobson 1990). Thus, the actions of ACh are manifold. The actions of ACh are mediated by two different types of receptors: the ionotropic nicotinic type and the metabotropic muscarinic type. Each of these classes of ACh receptor (AChR) has multiple subtypes with unique structural and functional characteristics, and thus ACh released from a nerve terminal may contribute to a wide variety of brain functions by activating different intracellular pathways depending on the distribution of the receptor types.


Nicotinic Receptor Basal Forebrain Nicotinic Acetylcholine Receptor Cholinergic System Population Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdulla FA, Calaminici M-R, Stephenson JD, et al (1993) Chronic treatment with cholinoceptor drugs influences spatial learning in rats. Psychopharmacology 111:508–511PubMedCrossRefGoogle Scholar
  2. Albuquerque EX, Pereira EFR, Castro NG, et al (1995) Neuronal nicotinic receptors: function, modulation and structure. Sem Neurosci 7:91–101CrossRefGoogle Scholar
  3. Alkondon M, Pereira EFR, Albuquerque EX (1996a) Mapping the location of functional nicotinic and γ-aminobutyric acid A receptors on hippocampal neurons. J Pharmacol Exp Ther 279:1491–1506PubMedGoogle Scholar
  4. Alkondon M, Pereira EFR, Albuquerque EX (1996b) Characterization of nicotinic acetylcholine receptors in CA1 neurons of rat hippocampal slices. Soc Neurosci Abstr 22:1267Google Scholar
  5. Amarai DG, Kurz J (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59CrossRefGoogle Scholar
  6. Arai A, Guidotti A, Costa E, et al (1996) Effect of the AMPA receptor modulator IDRA 21 on LTP in hippocampal slices. Neuroreport 7:2211–2215PubMedCrossRefGoogle Scholar
  7. Bartus RT, Dean RD, Beer B, et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414PubMedCrossRefGoogle Scholar
  8. Beatty WW, Carbone CP (1980) Septal lesions, intramaze cues and spatial behavior in rats. Physiol Behav 24:675–678PubMedCrossRefGoogle Scholar
  9. Benardo LS, Prince DA (1982) Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res 249:315–331PubMedCrossRefGoogle Scholar
  10. Benowitz NL, Porchet H, Jacob P (1989) Nicotine dependence and tolerance in man: pharmacokinetic and pharmacodynamic investigations. Prog Brain Res 79:279–287PubMedCrossRefGoogle Scholar
  11. Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in dentate area of the anesthetized rabbit following stimulation of perforant path. J Physiol 232:331–356PubMedGoogle Scholar
  12. Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of perforant path. J Physiol 232:357–374PubMedGoogle Scholar
  13. Brenner DE, Kuku UWA, Vanbelle G, et al (1993) Relationship between cigarette smoking and Alzheimer’s disease in a population-based case-control study. Neurology 43:293–300PubMedCrossRefGoogle Scholar
  14. Butcher LL (1995) Cholinergic neurons and networks. The rat nervous system. Academic Press, New York, pp 1003–1015Google Scholar
  15. Chavez NL, Crona JH, Washburn MS, et al (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors (α2β2, α2β4, α3β2, α3β4, α4β2, α4β4 and α7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280:346–356Google Scholar
  16. Clarke PB (1993) Nicotinic receptors in mammalian brain: localization and relation to cholinergic innervation. Prog Brain Res 98:77–83PubMedCrossRefGoogle Scholar
  17. Clarke PB, Reuben M (1996) Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol 117:595–606PubMedCrossRefGoogle Scholar
  18. Clarke PB, Schwartz RD, Paul SM, et al (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H] acetylcholine, [3H]nicotine, and [125I]-α-bungarotoxin. J Neurosci 5:1307–1315PubMedGoogle Scholar
  19. Cole AE, Nicoli RA (1984) The pharmacology of cholinergic excitatory responses in hippocampal pyramidal cells. Brain Res 305:283–290PubMedCrossRefGoogle Scholar
  20. Court JA, Perry EK (1994) CNS nicotinic receptors. Possible therapeutic targets in neurodegenerative disorders. CNS Drugs 2:216–233CrossRefGoogle Scholar
  21. Couturier S, Bertrand D, Matter J-M, et al (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homooligomeric channel blocked by α-BTX. Neuron 5:847–856PubMedCrossRefGoogle Scholar
  22. Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908PubMedCrossRefGoogle Scholar
  23. Decker MW, Curzon P, Brioni JD (1995) Influence of separate and combined septal and amygdala lesions on memory, acoustic startle, anxiety, and locomotor activity in rats. Neurobiol Learn Mem 64:156–168PubMedCrossRefGoogle Scholar
  24. Delbono O, Gopalakrishnan M, Renganathan M, et al (1997) Activation of the recombinant humanα7 nicotinic acetylcholine receptor significantly raises intracellular free calcium. J Pharmacol Exp Ther 280:428–438PubMedGoogle Scholar
  25. Donnelly RD, Xue IC, Americ SP, et al (1996) In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418. Brain Res 719:36–44CrossRefGoogle Scholar
  26. Dunnett SB, Low WC, Iverson SD, et al (1982) Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res 251:348–355CrossRefGoogle Scholar
  27. Freedman R, Wetmore C, Stromberg I, et al (1993) a-Bungaro toxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression. J Neurosci 13:1965–1975PubMedGoogle Scholar
  28. Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature (Lond) 336:170–173PubMedCrossRefGoogle Scholar
  29. Freund RK, Jungschaffer DA, Collins AC, et al (1988) Evidence for modulation of GABAergic neurotransmission by nicotine. Brain Res 453:215–220PubMedCrossRefGoogle Scholar
  30. Fu WM, Liu JJ (1997) Regulation of acetylcholine release by presynaptic nicotinic receptors at developing neuromuscular synapses. Mol Pharmacol 51:390–398PubMedGoogle Scholar
  31. Gähwiler BH (1988) Organotypic cultures of neural tissue. Trends Neurosci 11:484–489PubMedCrossRefGoogle Scholar
  32. Gähwiler BH, Brown DA (1985) Functional innervation of cultured hippocampal neurons by cholinergic afferents from co-cultured septal explants. Nature (Lond) 313:577–579CrossRefGoogle Scholar
  33. Gray R, Rajan AS, Radcliffe KA, et al (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature (Lond) 383:713–716CrossRefGoogle Scholar
  34. Heinemann S, Boulter J, Connolly J, et al (1991) The nicotinic receptor genes. Clin Neuropharmacol 14:S45-S61Google Scholar
  35. Hepler DJ, Wenk GL, Cribbs BL, et al (1985) Memory impairments following basal forebrain lesions. Brain Res 346:8–14PubMedCrossRefGoogle Scholar
  36. Hobson JA (1990) Sleeping and dreaming. J Neurosci 10:371–382PubMedGoogle Scholar
  37. Jones GMM, Sahakian BJ, Levy R, et al (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 108:485–494PubMedCrossRefGoogle Scholar
  38. Leanza G, Muir J, Nilsson OG, et al (1996) Selective immunolesioning of the basal forebrain cholinergic system disrupts short-term memory in rats. Eur J Neurosci 8:1535–1544PubMedCrossRefGoogle Scholar
  39. Lee PN (1994) Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13:131–144PubMedCrossRefGoogle Scholar
  40. Leranth C, Frotscher M (1989) Organization of the septal region in the rat brain: cholinergic-GAB Aergic interconnections and the termination of hippocamposeptal fibers. J Comp Neurol 289:304–314PubMedCrossRefGoogle Scholar
  41. Levin ED (1992) Nicotine systems and cognitive function. Psychopharmacology 108:417–431PubMedCrossRefGoogle Scholar
  42. Levin ED (1993) Nicotinic involvement in cognitive function: possible therapeutic applications. Med Chem Res 2:612–627Google Scholar
  43. Lewis PR, Shute CCD (1967) The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and subfornical organ and supraoptic crest. Brain 90:521–540PubMedCrossRefGoogle Scholar
  44. Lindstrom J, Schoepfer R, Conroy W, et al (1991) The nicotinic acetylcholine receptor gene family. Adv Exp Med Biol 287:255–278PubMedCrossRefGoogle Scholar
  45. Madison DV, Lancaster B, Nicoli RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 7:733–741PubMedGoogle Scholar
  46. McGehee DS, Heath MJ, Gelber S, et al (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696PubMedCrossRefGoogle Scholar
  47. McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546PubMedCrossRefGoogle Scholar
  48. McGehee DS, Role LW (1996) Presynaptic ionotropic receptors. Curr Opin Neurobiol 6:342–349PubMedCrossRefGoogle Scholar
  49. Morris RGM, Anderson E, Lynch GS, et al (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature (Lond) 319:774–776CrossRefGoogle Scholar
  50. Muller D, Buchs PA, Stoppini L (1993) Time course of synaptic development in hippocampal organotypic cultures. Dev Brain Res 71:93–100CrossRefGoogle Scholar
  51. Murphy PC, Sillito AM (1991) Cholinergic enhancement of direction selectivity in the visual cortex of the cat. Neuroscience 40:13–20PubMedCrossRefGoogle Scholar
  52. Newhouse PA, Potter A, Lenox RH (1993) The effects of nicotinic agents on human cognition: possible therapeutic applications in Alzheimer’s and Parkinson’s diseases. Med Chem Res 2:628–642Google Scholar
  53. Nordberg A, Romanelli L, Sundwall A, et al (1989) Effect of acute and subchronic nicotine treatment on cortical acetylcholine release and on nicotinic receptors in rats and guinea-pigs. Br J Pharmacol 98:71–78PubMedCrossRefGoogle Scholar
  54. Picciotto MR, Zoli M, Rimondini R, et al (1998) Acetylcholine receptors containing the beta 2 subunit are involved in the reinforcing properties of nicotine. Nature (Lond) 391:173–177CrossRefGoogle Scholar
  55. Poincheval-Fuhrman S, Sara SJ (1993) Chronic nicotine ingestion improves radial arm mazeperformance in rats. Behav Pharmacol 4:535–539PubMedCrossRefGoogle Scholar
  56. Price DL, Koliatsos VE, Clatterbuck RC (1993) Cholinergic systems: human diseases, animal models, and prospects for therapy. Prog Brain Res 98:51–60PubMedCrossRefGoogle Scholar
  57. Reece LJ, Schwartzkroin PA (1991) Nicotine exerts the differential effects on different CAl hippocampal cell types. Brain Res 540:287–290PubMedCrossRefGoogle Scholar
  58. Ridley RM, Thomley HD, Baker HF, et al (1991) Cholinergic neural transplants into hippocampus restore learning ability in monkeys with fornix lesions. Exp Brain Res 83:533–538PubMedCrossRefGoogle Scholar
  59. Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085PubMedCrossRefGoogle Scholar
  60. Rosecrans JA, Karan LD (1993) Neurobehavioral mechanisms of nicotine action: role in the initiation and maintenance of tobacco dependence. J Subst Abuse Treat 10:161–170PubMedCrossRefGoogle Scholar
  61. Sahakian B J, Coull JT (1994) Nicotine and tetrahydroaminoacridine: evidence for improved attention in patients with dementia of the Alzheimer type. Drug Dev Res 31:80–88CrossRefGoogle Scholar
  62. Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443PubMedCrossRefGoogle Scholar
  63. Seguela P, Wadiche J, Dineley MK, et al (1993) Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J. Neurosci 13:596–604PubMedGoogle Scholar
  64. Semba K (1991) The cholinergic basal forebrain: a critical role in cortical arousal. In: Napier TC (ed) The basal forebrain. Plenum Press, New York, pp 197–218CrossRefGoogle Scholar
  65. Sparks DL, Hunsaker JD, Slevin JT, et al (1992) Monoaminergic and cholinergic synaptic markers in the nucleus basalis of Meynert (nbM): normal age-related changes and the effect of heart disease and Alzheimer’s disease. Ann Neurol 31:611–620PubMedCrossRefGoogle Scholar
  66. Struble RG, Lehmann J, Mitchell SJ, et al (1986) Basal forebrain neurons provide major cholinergic innervation of primate neocortex. Neurosci Lett 66:215–220PubMedCrossRefGoogle Scholar
  67. Summers KL, Giacobini E (1995) Effects of local and repeated systemic administration of (-)-nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20:753–759PubMedCrossRefGoogle Scholar
  68. Whiting PJ, Schoepfer R, Conroy, WG, et al (1991) Expression of nicotinic acetylcholine receptor subtypes in brain and retina. Mol Brain Res 10:61–70PubMedCrossRefGoogle Scholar
  69. Wilkie GI, Hutson P, Sullivan JP, et al (1996) Pharmacological characterization of a nicotinic autoreceptor in rat hippocampal synaptosomes. Neurochem Res 21:1141–1148PubMedCrossRefGoogle Scholar
  70. Woolf NJ, Eckenstein F, Butcher LL (1984) Cholinergic systems in the rat brain. I. Projections to the limbic telencephalon. Brain Res Bull 13:751–784PubMedCrossRefGoogle Scholar
  71. Zamani MR, Allen YS, Owen GP, et al (1997) Nicotine modulates the neurotoxic effect of β-amyloid protein (25-35) in hippocampal cultures. Neuroreport 8:513–517PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1999

Authors and Affiliations

  • Satoshi Fujii
    • 1
  • Elisabeth C. Walcott
    • 1
  • Katumi Sumikawa
    • 1
  1. 1.Department of PsychobiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations