Skip to main content

The Role of Nitric Oxide and Kinin on the Renal Water-Sodium Metabolism

  • Conference paper
Recent Advances in Nitric Oxide Research
  • 55 Accesses

Summary

Neutral endopeptidase 24.11 (NEP) catabolizes atrial natriuretic peptide (ANP) and kinin, and NEP inhibition results in diuresis and natriuresis. To further investigate the mechanisms of renal effects of NEP inhibitor (NEPI), we observed the role of nitric oxide (NO) together with kinin and ANP. NEPI, UK 73967 or thiorphan and kinin’s receptor antagonist, Hoe 140 (Hoe) were employed, with or without a pretreatment of NO synthase inhibitor, N(1)-monomethyl-L-arginine (L-NMMA) in normal rats. Urinary kinin, NO 2+NO 3 (NOx), cGMP, urine volume (UV) and urinary sodium excretion (UNaV) before and after NEPI, and plasma ANP level at the end of experiment, were evaluated. None of the variables changed with vehicle. There were significant increase in kinin, NOx, cGMP, UV and UNaV by NEPI. There were significant positive correlations between Akinin and AUV or ΔUNaV, ΔNOx and ΔUV or UNaV, and ΔcGMP and ΔUNaV. However, there was no difference in plasma ANP between vehicle and NEPI groups. Hoe cancelled the increases of UV and UNaV caused by NEPI. With a pretreatment of L-NMMA, NEPI significantly increased kinin, while cGMP. UV and UNaV did not increase.

In conclusion, augmented renal kinin may play an important role in the renal water-sodium metabolism by NEPI, and renal NO may contribute to the kinin's action on this mechanism, while ANP may not contribute to it at least in nonnotensive rats. Moreover, changes in urinary cGMP does not reflect the changes in plasma ANP, but reflect the changes in renal NO under this condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kauker ML (1980) Bradykinin action on the efflux of luminal 22Na in the rat nephron. J Pharmacol Exp Ther 214: 119–123

    PubMed  CAS  Google Scholar 

  2. Tomita K, Pisano JJ, Knepper MA (1985) Control of sodium and potassium transport in the cortical collecting duct of the rat.-Effects of bradykinin, vasopressin, and deoxycorticosterone. J Clin Invest 76: 132–136

    Article  PubMed  CAS  Google Scholar 

  3. Tomiyama H, Scicli AG, Scicli GM, Carretero OA (1990) Renal effects of Fab fragments of kinin antibodies on deoxycorticosterone acetate-salt-treated rats Hypertension 15: 413–414.

    Article  Google Scholar 

  4. Shimamoto K, Ura N, Nakao T, Nishimiya T, Mita T, Kondo M, Ando T, Tanaka S, Iimura 0 (1983) Role of the renal kallikrein-kinin system in sodium metabolism in normotensives and essential hypertensives. New Zealand Med J 96: 905–907

    Google Scholar 

  5. Margolius HS, Geller R, Pisano JJ, Sjoerdsma A (1971) Altered urinary kallikrein excretion in human hypertension. Lancet ii: 1063–1065

    Article  Google Scholar 

  6. Carretero OA, Scicli AG (1980) The renal kallikrein-kinin system. Am J Physiol 238 F247–F255

    PubMed  CAS  Google Scholar 

  7. Ura N, Shimamoto K, Nakao T, Ogasawara A, Tanaka S, Mita T, Nishimiya T, Iimura O (1983) The excretion of human urinary kallikrein quantity and activity in normal and low renin subgroups of essential hypertension. Clin Exp Hypertens A5: 329–337

    Article  Google Scholar 

  8. Iimura O, Shimamoto K, Ura N, Nakagawa M, Nishimiya T, Ando T, Yamaguchi Y, Masuda A, Ogata H, Saito S, Yamaji I, Fukuyama S (1987) The pathophysiological role of renal dopamine, kallikrein-kinin and prostaglandin systems in essential hypertension Agents and actions 22: 247–256

    PubMed  CAS  Google Scholar 

  9. Scicli AG, Rabito S, Carretero OA (1982) Blood and urinary kinins in human subjects during normal and low sodium intake. Adv Exp Med Biol 156A: 877–882

    Google Scholar 

  10. Ura N, Shimamoto K, Ogata H, Sakakibara T, Ando T, Fukuyama S, Nakagawa M, Saito S, Tanaka S, Iimura O (1989) The role of renal kininases in primary aldosteronism. Adv Exp Med Biol 247B: 145–150

    PubMed  CAS  Google Scholar 

  11. Sakakibara T, Ura N, Shimamoto K, Ogata H, Ando T, Fukuyama S, Yamaguchi Y, Masuda A, Mori Y, Saito S, Ise T, Sasa Y, Yamauchi K, Iimura O (1989) Localization of neutral endopeptidase in the kidney determined by stop-flow method Adv Exp Med Biol 247B: 349–353

    PubMed  CAS  Google Scholar 

  12. Maeda Y, Tomita K, Ujiie K, Iino Y, Yoshiyama N, Shiigai T (1988) Renal function, hypertension and kallikrein-kinin system. Edited by Iimura O, Margolius HS, University of Tokyo Press, Tokyo, pp 99–102

    Google Scholar 

  13. Ura N, Carretero OA, Erdös EG (1987) Role of renal endopeptidase 24.11 in kinin metabolism in vitro and in vivo. Kidney Int 32: 507–513

    Article  PubMed  CAS  Google Scholar 

  14. Ogata H, Ura N, Shimamoto K, Sakakibara T, Ando T, Nishimiya T, Masuda A, Ise T, Shiiki M, Uno K, Iimura O (1989) A sensitive method for differential determination of kininase I, II and neutral endopeptidase (NEP) in human urine Adv Exp Med Biol 247B: 343–348

    PubMed  CAS  Google Scholar 

  15. Ura N, Shimamoto K, Satoh S, Kuroda S, Nomura N, Ohmoto Y, Masuda A, Iimura O (1993) Renal kininase I, kininase II and neutral endopeptidase 24.11 activities in patients with essential hypertension, primary aldosteronism and Cushing’s syndrome Hypertens Res 16: 253–258

    Article  Google Scholar 

  16. Blaine EH, Seymour AA, Marsh EA, Napier MA (1986) Effects of atrial natriuretic factor on renal function and cyclic GMP production. Fed Proc 45: 2122–2127

    PubMed  CAS  Google Scholar 

  17. Sonnenberg H, Honrath U, Chong CK, Wilson DR (1986) Atrial natriuretic factor inhibits sodium transport in medullary collecting duct. Am J Physiol 250: F963–F966

    PubMed  CAS  Google Scholar 

  18. Stephenson SL, Kenny AJ (1987) The hydrolysis of alpha human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase 24.11. Biochem J 243: 183–187

    PubMed  CAS  Google Scholar 

  19. Maack T, Suzuki M, Almeida FA, Nussensweig D, Scarborough RM, McEnroe GA (1987) Physiological role of silent receptors of atrial natriurretic factor. Science 238: 675–678

    Article  PubMed  CAS  Google Scholar 

  20. Gros C, Souque A, Schwartz JC, Duchier J, Cournot A, Baumer P, Lecomte JM Protection of atrial natriuretic factor against degradation (1989) Diuretic and natriuretic responses after in vivo inhibition of enkephalinase (EC 3.4.24.11) by acetorphan. Proc Natl Acad Sci 86: 7580–7584

    Article  PubMed  CAS  Google Scholar 

  21. Seymour AA, Fennell SA, Swerdel JN (1989) Potentiation of renal effects of atrial natriuretic factor-(99-126) by SQ 29072. Hypertension 14: 87–97

    Article  PubMed  CAS  Google Scholar 

  22. Sybertz EJ, Chiu PJS, Vemulapalli S, Pitts B, Foster CJ, Watkins RW, Barnett A (1989) SCH 39370, a neutral metalloendopeptidase inhibitor, potentiates biological responses to atrial natriuretic factor and lowers blood pressure in desoxycorticosterone acetate-sodium hypertensive rats. J Pharmacol Exp Ther 250: 624–631

    PubMed  CAS  Google Scholar 

  23. Richards AM, Wittert G, Espiner EA, Yandel TG, Frampton C, Ikram H: Prolonged inhibition of endopeptidase 24.11 in normal man (1991) renal, endocrine and haemodynamic effects. J Hypertens 9: 955–962

    Google Scholar 

  24. Boulanger C, Schini VB, Moncada S, Vanhoutte PM (1990) Stimulation of cyclic GMP production in cultured porcine endothelial cells by bradykinin, adenosine diphosphate, calcium ionophore A23 187 and nitric oxide. Br J Pharmacol 101: 152–160

    Article  PubMed  CAS  Google Scholar 

  25. Lahera V, Salom MG, Fiksen-Olsen MJ, Romero JC (1991) Mediatory role of endothelium-derived nitric oxide in renal vasodilatory and excretory effects of bradykinin. Am J Hypertens 4: 260–262

    PubMed  CAS  Google Scholar 

  26. Shimamoto K, Ando T, Nakao T, Sakuma M, Miyahara M (1978) A sensitive radioimmunoassay method for urinary kinins in man. J Lab Clin Med 91: 721–728

    PubMed  CAS  Google Scholar 

  27. Green LC, Wagner DA, Glogoeski J, Skipper PL, Wishnok IS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]niyrate in biological fluids. Anal Biochem 126: 131–138.

    Article  PubMed  CAS  Google Scholar 

  28. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  29. Ishida H, Scicli AG, Carretero OA (1989) Role of angiotensin converting enzyme and other peptidases in in vivo metabolism of kinins. Hypertension 14: 322–327

    Article  PubMed  CAS  Google Scholar 

  30. Tamburini PP, Koehn JA, Gilligan JP, Charles D, Palmesino RA, Sharif R, McMartin C, Erion MD, Miller MJS (1989) Rat vascular tissue contains a neutral endopeptidase capable of degrading atrial natriuretic peptide. J Pharmacol Exp Ther 251: 956–961

    PubMed  CAS  Google Scholar 

  31. Stoos BA, Carretero OA, Farhy RD, Scicli G, Garvin JL (1992) Endotherium-derived relaxing factor inhibits transport and increases cGMP content in cultured mouse cortical collecting duct cells. J Clin Invest 89: 761–765

    Article  PubMed  CAS  Google Scholar 

  32. Terada Y, Tomita K, Nonoguchi H, Marumo F (1992) Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments. J Clin Invest 90: 659–665

    Article  PubMed  CAS  Google Scholar 

  33. Ujiie k, Yuen J, Hogarth L, Danziger R, Star RA (1994) Localization and regulation if endothelial NO synthase mRNA expression in rat kidney. Am J Physiol 269: F296–302

    Google Scholar 

  34. McKee M, Scavone C, Nathanson JA (1994) Nitric oxide, cGMP, and hormone regulaion of active sodium transport. Proc Natl Acad Sci 91: 12056–12060

    Article  PubMed  CAS  Google Scholar 

  35. Stoos BA, Garcia NH, Garvin JL (1995) Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collection duct. J Am Soc Nephrol 6: 89–94

    PubMed  CAS  Google Scholar 

  36. Chiu PJS, Tetzloff G, Romano MT, Foster CJ, Sybertz EJ (1991) Influence of C-ANF receptor and neutral endopeptidase on pharmacokinetics of ANF in rats. Am J Physiol 260: R208–216

    PubMed  CAS  Google Scholar 

  37. Chevalier RL, Garmey M, Scarborough RM, Linden J, Gomez RA, Peach MJ, Carey RM (1991) Inhibition of ANP clearance receptors and endopeptidase 24.11 in maturing rats. Am J Physiol 260: R1218–1228

    PubMed  CAS  Google Scholar 

  38. Singer DRJ, Markandu ND, Buckley MG, Miller MA, Sagnella GA, MacGregor GA (1991) Dietary sodium and inhibition of neutral endopeptidase 24 11 in essential hypertension. Hypertension 18: 798–804

    Article  PubMed  CAS  Google Scholar 

  39. Richards AM, Crozier IG, Kosoglou T, Railings M, Espiner EA, Nicholls MG, Yandel TG, Ikram H, Frampton C (1993) Endopeptidase 24.11 inhibition by SCH 42495 in essential hypertension. Hypertension 22: 119–126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this paper

Cite this paper

Ura, N., Takagawa, Y., Agata, J., Shimamoto, K. (1999). The Role of Nitric Oxide and Kinin on the Renal Water-Sodium Metabolism. In: Kitabatake, A., Sakuma, I. (eds) Recent Advances in Nitric Oxide Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67929-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67929-5_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68010-9

  • Online ISBN: 978-4-431-67929-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics