Skip to main content

Deep-Sea Psychrophiles

  • Chapter
  • 587 Accesses

Abstract

Psychrophilic and psychrotrophic bacteria in the deep-sea environment have been isolated and characterized. More than 100 psychrotrophic and 9 psychrophilic bacteria were isolated from deep-sea sediment samples. To seek possibilities to apply the isolates in biotechnology and to analyze their physiological adaptation mechanisms to low temperature, the enzymes they produce and their membrane fatty acid compositions were studied. Among a range of these bacteria, a series of strains that produce enzymes including amylases and lipases were found. Most of the examined enzymes showed significant retention of activity at low temperature and low thermostability. Analysis of total cell membrane fatty acid composition demonstrated a larger presence of unsaturated fatty acids than in their mesophilic counterparts. The growth temperature of the psychrophiles also affects the ratio of unsaturated fatty acids. The results illustrate their physiological adaptation to the permanently cold deep-sea environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin B (1988) Marine microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • DeLong EF, Yayanos AA (1986) Biochemical and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737

    PubMed  CAS  Google Scholar 

  • Fukunaga N, Russell NJ (1990) Membrane lipid composition and glucose uptake in two psychrotolerant bacteria from Antarctica. J Gen Microbiol 136:1669–1673

    Article  CAS  Google Scholar 

  • Gounot A-M (1991) Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 71:386–397

    Article  PubMed  CAS  Google Scholar 

  • Hamamoto T, Horikoshi K (1991) Characterisation of an amylase from a psychrotrophic Vibrio isolated from a deep-sea mud sample. FEMS Microbiol Let 84:79–84

    Article  CAS  Google Scholar 

  • Hamamoto T, Horikoshi K (1993) Deep-sea microbiology research within the Deepstar program. J Mar Biotechnol 1:119–124

    Google Scholar 

  • Hamamoto T, Kaneda M, Horikoshi K, Kudo T (1994a) Characterization of a protease from a psychrotroph, Pseudomonas fluorescens 114. Appl Environ Microbiol 60:3878–3880

    CAS  Google Scholar 

  • Hamamoto T, Kaneda M, Kudo T, Horikoshi K (1995a) Characterization of a protease from psychrophilic Vibrio sp. strain 5709. J Mar Biotechnol 2:219–222

    CAS  Google Scholar 

  • Hamamoto T, Takata N, Kudo T, Horikoshi K (1994b) Effect of temperature and growth phase on fatty acid composition of the psychrophilic Vibrio sp. strain no. 5710. FEMS Microbiol Lett 119:77–82

    Article  CAS  Google Scholar 

  • Hamamoto T, Takata N, Kudo T, Horikoshi K (1995b) Characteristic presence of polyunsatu-rated fatty acids in marine psychrophilic vibrios. FEMS Microbiol Lett 129:51–56

    CAS  Google Scholar 

  • Heymann E, Mentlein R (1981) Carboxylesterases-amidases. Methods Enzymology. 77:333–344

    Article  CAS  Google Scholar 

  • Jannasch HW, Taylor CD (1984) Deep sea microbiology. Annu Rev Microbiol 38:487–514

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (1991) Characterization of a metalloprotease from psychrophilic Xanthomonas maltophila. FEMS Microbiol Lett 79:257–262

    Article  CAS  Google Scholar 

  • Mitchell P, Yen HC, Mathemeier PF (1985) Properties of lactate dehydrogenase in a psychrophilic marine bacterium. Appl Environ Microbiol 49:1332–1334

    CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Myers SF, Anderson A (1992) Microbes from 20,000 feet under the sea. Science 255:28–29

    Article  PubMed  CAS  Google Scholar 

  • Nakajima M, Mizusawa K, Yoshida F (1974) Purification and properties of an extracellular proteinase of psychrophilic Escherichia freundii. Eur J Biochem 44:87–96

    Article  PubMed  CAS  Google Scholar 

  • Nichols DS, Nichols PD, McMeekin TA (1993) Polyunsaturated fatty acids in Antarctic bac-teria. Antarc Sci 5:149–160

    Google Scholar 

  • Ohkuma M, Ohtoko K, Takada N, Hamamoto T, Usami R, Kudo T, Horikoshi K (1996) Characterization of malate dehydrogenase from deep-sea psychrophilic Vibrio sp. strain no. 5710 and cloning of its gene. FEMS Microbiol Lett 137:247–252

    Article  PubMed  CAS  Google Scholar 

  • Okuyama H, Okajima N, Sasaki S, Higashi S, Murata N (1991) The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium. Biochim Biophys Acta 1084:13–20

    Article  PubMed  CAS  Google Scholar 

  • Oliver JD, Stringer WF (1984) Appl Environ Microbiol 47:461–466

    PubMed  CAS  Google Scholar 

  • Ray MK, Uma Devi K, Seshu Kumar G, Shivaji S (1992) Extracellular protease from the Antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923

    PubMed  CAS  Google Scholar 

  • Russell NJ (1984) Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 9:108–112

    Article  CAS  Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci 326:595–611

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria—molecular adaptations of membrane lipids. Comp Biochem Physiol 118A:489–493

    Article  CAS  Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    PubMed  CAS  Google Scholar 

  • Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182

    Article  CAS  Google Scholar 

  • Russell NJ, Hamamoto T (1998) Psychrophiles. In: Horikoshi K, Grant WD (eds) Extremo-philes: microbial life in extreme environments. John Wiley, New York, pp 25–45

    Google Scholar 

  • Takami H, Akiba T, Horikoshi K (1990) Characterization of an alkaline protease from Bacil-lus sp. No. AH-101. Appl Microbiol Biotechnol 33:519–523

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this chapter

Cite this chapter

Hamamoto, T. (1999). Deep-Sea Psychrophiles. In: Horikoshi, K., Tsujii, K. (eds) Extremophiles in Deep-Sea Environments. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67925-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67925-7_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68008-6

  • Online ISBN: 978-4-431-67925-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics