Skip to main content

Abstract

Among the extremophiles, one important group of microorganisms are those able to grow at exceptionally high temperatures. This chapter is mostly about extreme thermophiles, a group of thermophiles whose optimum growing temperatures are above 80°C. They are the so called hyperthermophiles, which can grow at temperatures up to the boiling point of water (100°C or 212°F).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins Life 15:327–3450

    Article  CAS  Google Scholar 

  • Bartlett DH (1992) Microbial life at high pressures. Sci Prog 76:479–496

    PubMed  CAS  Google Scholar 

  • Bernhardt G, Jaenicke R, Ludemann H-D, Konig H, Stetter KO (1988) Does high pressure extend the temperature range of viability of thermophilic archaebacteria? Pressure-dependent growth enhancement and growth inhibition of Methanococcus thermolithotrophicus. Appl Environ Microbiol 54:1258–1261

    PubMed  CAS  Google Scholar 

  • Blumentals II, Robinson AS, Kelly RM (1990) Characterization of sodium dodecyl-sulfateresistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1992–1998

    PubMed  CAS  Google Scholar 

  • Böck A, Kandler 0 (1985) Antibiotic sensitivity of archaebacteria. In: Woese CR, Wolfe RS (eds) The bacteria, vol 8. Academic, Orlando, pp525–544

    Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York

    Book  Google Scholar 

  • Brock TD, Madigan MT (1991) Biology of microorganisms. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Canganella F, González JM, Yanagibayashi M, Kato C, Horikoshi K (1997) Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermo-coccus peptonophilus. Arch Microbiol 168:1–7

    Article  PubMed  CAS  Google Scholar 

  • Consalvi V, Chiaraluce R, Politi L, Vaccaro R, De Rosa M, Scandurra R (1991) Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem 202:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Cowan DA, Smolenski KA, Daniel RM, Morgan HM (1987) An extremely thermostable ex-trecellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88°C. Biochem J 247:121–133

    PubMed  CAS  Google Scholar 

  • Dirmeier R, Keller M, Hafenbradl D, Braun F-J, Rachel R, Burggraf S, Stetter KO (1998) Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114

    Article  PubMed  CAS  Google Scholar 

  • DiRuggiero J, Robb FT, Jagus R, Klump HH, Borges KM, Kessel M, Mai X, Adams MWW (1993) Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaeon, ES4. J Biol Chem 268:17767–17774

    PubMed  CAS  Google Scholar 

  • Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993) Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349

    Article  CAS  Google Scholar 

  • Fiala, G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 1000. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • González JM (1996) A general purpose program for obtaining most probable number tables. J Microbiol Methods 26:215–218

    Article  Google Scholar 

  • González JM, Kato C, Horikoshi K (1995) Thermococcus peptonophilus sp. nov., a fast-growing, extreme thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164

    Article  PubMed  Google Scholar 

  • González JM, Kato C, Horikoshi K (1996b) Membrane-bound, sodium dodecyl sulfate-resistant proteolytic activity from the extreme thermophilic archaeon Thermococcus peptonophilus. J Mar Biotechnol 4:159–164

    Google Scholar 

  • González JM, Kato C, Horikoshi K (1996a) Culturability and survival of an extreme thermophile isolated from deep-sea hydrothermal vents. Arch Microbiol 166:64–67

    Article  Google Scholar 

  • González JM, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130

    Article  PubMed  Google Scholar 

  • González JM, Sato T, Kato C, Horikoshi K (1994) Isolation and characterization of hyperthermophilic archaebacteria from Southwestern Pacific hydrothermal vents. JAMSTEC J Deep Sea Res 10:471–480

    Google Scholar 

  • Grote R, Li L, Tamaoka J, Kato C, Horikoshi K, Antranikian G (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3:55–62

    Article  PubMed  CAS  Google Scholar 

  • Higuchi S, Kobayashi T, Kimura K, Horikoshi K, Kudo T (1997) Molecular cloning, nucleotide sequence and expression in Escherichia coli of hyperthermophilic glutamate dehydrogenase gene from Thermococcus profundus. J Ferment Bioeng 83:405–411

    Article  CAS  Google Scholar 

  • Holden JF, Baross JA (1995) Enhanced thermotolerance by hydrostatic pressure in the deep-sea hyperthermophile Pyrococcus strain ES4. FEMS Microbiol Ecol 18:27–34

    Article  CAS  Google Scholar 

  • Horikoshi K (1991) General view of alkaliphiles and thermophiles. In: Horikoshi K, Grant WD (eds) Superbugs: microorganisms in extreme environments. Springer, New York, pp3–14

    Google Scholar 

  • Huber R, Stoffers P, Cheminee JL, Richnow HH, Stetter KO (1990) Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting MacDonald seamount. Nature 345:179–181

    Article  Google Scholar 

  • Hudson RC, Ruttersmith LD, Daniel RM (1993) Glutamate dehydrogenase from the extreme-ly thermophilic archaebacterial isolate AN1. Biochim Biophys Acta 1202:244–250

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke R (1981) Enzymes under extremes of physical conditions. Annu Rev Biophys Bioeng 10:1–67

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW, Mottl M (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux SJ, Langworthy TA (1988) Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Appl Environ Microbiol 54:1203–1209

    CAS  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  CAS  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76.

    Article  PubMed  CAS  Google Scholar 

  • Kengen SWM, Stams AJM (1994) Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 161:168–175

    Article  CAS  Google Scholar 

  • Klingeberg M, Galsinsky B, Sjoholm C, Kasche V, Antranikian G (1995) Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecific proteinase from the extremely thermophilic archaeon Thermococcus stetteri. Appl Environ Microbiol 61:3098–3104

    PubMed  CAS  Google Scholar 

  • Klump H, DiRuggiero J, Kessel M, Park J-B, Adams MWW, Robb FT (1992) Glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. J Biol Chem 267:22681–22685

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Higuchi S, Kimura K, Kudo T, Horikoshi K (1995) Properties of glutamate dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus. J Biochem 118:587–592.

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Kwak YS, Akiba T, Kudo T, Horikoshi K (1994) Thermococcus profundus sp. nov., a new hyperthermophilic archaeum isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236.

    Article  CAS  Google Scholar 

  • Koch AL (1994) Growth measurement. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp248–277

    Google Scholar 

  • Kwak YS, Kobayashi T, Akiba T, Horikoshi K, Kim YB (1995) A hyperthermophilic sulfur-reducing archaebacterium, Thermococcus sp. DT1331, isolated from a deep-sea hydrothermal vent. Biosci Biotechnol Biochem 59:1666–1669

    Article  PubMed  CAS  Google Scholar 

  • Kyo M, Tuji T, Usui H, Itoh T (1991) Collection, isolation and cultivation system for deep-sea microbes study: concept and design. Oceans 1:419–423

    Google Scholar 

  • Ludlow JM, Clark DS (1991) Engineering considerations for the application of extremophiles in biotechnology. Crit Rev Biotechnol 10:321–345

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Bonch-Osmolovskaya EA, Neuer A, Kostrikina NA, Chernych NA, Alekseev VA (1989) Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262

    Article  Google Scholar 

  • Moore S, Stein WH (1963) Chromatographic determination of amino acids by the use of automatic recording equipment. Methods Enzymol 6:819–831

    Article  CAS  Google Scholar 

  • Moriya K, Inada T, Kyo M, Horikoshi K (1995) Large-scale fermentation under high hydrostatic pressure using a newly developed deep-sea baro/thermophilic collection and cultivation system. J Mar Biotechnol 2:175–177

    Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692

    PubMed  CAS  Google Scholar 

  • Neuer A, Jannasch HW, Belkin S, Stetter KO (1990) Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207

    Article  Google Scholar 

  • Ohshima T, Nishida N (1993) Purification and properties of extremely thermostable glutamate dehydrogenases from two hyperthermophilic archaebacteria, Pyrococcus woesei and Pyrococcus furiosus. Biosci Biotechnol Biochem 57:945–951

    Article  PubMed  CAS  Google Scholar 

  • Pace NR (1991) Origin of life—facing up to the physical setting. Cell 65:531–533

    Article  PubMed  CAS  Google Scholar 

  • Pledger RI, Crump BC, Baross JA (1994) A barophilic response by two hyperthermophilic, hydrothermal vent Archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol Ecol 14:233–242

    Article  Google Scholar 

  • Postgate JR (1977) Death in macrobes and microbes. In: Gray TRG, Postgate JR (eds) The survival of vegetative microbes. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Rey senbach A-L, Deming JM (1991) Effects of hydrostatic pressure on growth of hyperthermophilic archaebacteria from the Juan de Fuca Ridge. Appl Environ Microbiol 57:1271–1274

    CAS  Google Scholar 

  • Robb FT, Park J-B, Adams MWW (1992) Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium, Pyrococcus furiosus. Biochim Biophys Acta 1120:267–272

    Article  PubMed  CAS  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in natural environments. Microbiol Rev 51:365–379

    PubMed  CAS  Google Scholar 

  • Schönheit P, Schäfer T (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11:26–57

    Article  Google Scholar 

  • Somero GN (1992) Adaptations to high hydrostatic pressure. Annu Rev Physiol 54:557–577

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1986) Diversity of extremely thermophilic archaebacteria. In: Brock TD (ed) Thermophiles: general, molecular, and applied microbiology. Wiley, New York, pp39–74

    Google Scholar 

  • Stetter KO (1995) Microbial life in hyperthermal environments: microorganisms from exotic environments continue to provide surprises about life’s extremities. ASM News 61:285–290

    Google Scholar 

  • Takai K, Inoue A, Horikoshi K (1999) Themoaerobacter marianensis gen. nov., sp. no v., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Bacteriol 49:619–628

    Article  PubMed  CAS  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    Article  PubMed  CAS  Google Scholar 

  • Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–407

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevaky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MD, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Yu FT, McFeters GA (1994) Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes. J Microbiol Methods 20:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG, Ben-Bassat, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440

    PubMed  CAS  Google Scholar 

  • Zillig W, Holz I, Janekovic D, Schafer W, Reiter WD (1983) The archaebacterium Thermo-coccus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbio! 4:88–94

    Article  Google Scholar 

  • Zillig W (1992) The order Thermococcales. In: Balous A, Truper HG, Dworkin M, Harder W, Schelerfer K-H (eds) The prokaryotes, 2nd edn, vol 1. Springer-Verlag, New York, pp702–706

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this chapter

Cite this chapter

González, J.M. (1999). Thermophiles. In: Horikoshi, K., Tsujii, K. (eds) Extremophiles in Deep-Sea Environments. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67925-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67925-7_6

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68008-6

  • Online ISBN: 978-4-431-67925-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics