Skip to main content

Barophiles (Piezophiles)

  • Chapter

Abstract

The deep-sea is regarded as an extreme environment with high hydrostatic pressures [up to 110 megapascal (MPa)], predominantly low temperatures (1°-2°C) but with occasional regions of extremely high temperature (up to 375°C) at hydrothermal vents, darkness, and low nutrient availability. It is accepted that deep-sea microbiology as a definable field did not exist before the middle of this century and was paid little attention except for the efforts of Certes and Portier (Jannasch and Taylor 1984). Certes, during the Travaillier and Talisman Expeditions (1882–1883), examined sediment and water collected from depths to 5000 m and found bacteria in almost every sample. He noted that bacteria survived at great pressure and might live in a state of suspended animation (Certes 1884). In 1904 Portier used a sealed and autoclaved glass tube as a bacteriological sampling device and reported colony counts from various depths and locations (Richard 1907). In 1949 ZoBell and Johnson started work on the effect of hydrostatic pressure on microbial activities. The term “barophilic” was first used, defined today as optimal growth at pressure higher than 0.1 MPa or by a requirement of increased pressure for growth. Many microorganisms in the deep-sea are extremophiles, such as halophiles, thermophiles, psychrophiles, barophiles, or piezophiles [the term piezophile was proposed as a replacement to barophile as the Greek translations of the prefixes baro and piezo mean weight and pressure, respectively (Yayanos 1995)], and some of these microorganisms cannot survive in “moderate” environments. In this chapter, we focus on the isolation and taxonomy of microorganisms adapted to the deep-sea, and the molecular bases of their high pressure adaptations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartlett D, Chi E (1995) Genetic characterization of ompH mutants in the deep-sea bacterjum Photobacterium species strain SS9. Arch Microbiol 162:323–328

    Article  Google Scholar 

  • Bartlett DII, Welch Ti (1995) ompH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9. J Bacteriol 177:1008–1016

    PubMed  CAS  Google Scholar 

  • Bartlett DH, Chi E, Welch TJ (1996) High pressure sensing and adaptation in the deep-sea bacterium Photobacterium species strain SS9. High pressure bioscience and biotechnology. In: Hayashi R, Balny C (eds) Elsevier Science BV, The Netherlands, pp29–36

    Chapter  Google Scholar 

  • Bartlett DH, Chi E, Wright WE (1993) Sequence of the ompH gene from the deep-sea bacterium Photobacterium SS9. Gene 131:125–128

    Article  PubMed  CAS  Google Scholar 

  • Bartlett D, Wright M, Yayanos AA, Silverman M (1989) Isolation of a gene regulated by hydrostatic pressure in a deep-sea bacterium. Nature 342:572–574

    Article  PubMed  CAS  Google Scholar 

  • Bisson MA, Kirst GO (1995) Pressure regulation in algae. Naturwissenschaften 82:461–471

    Article  CAS  Google Scholar 

  • Blount P, Sukharev SI, Moe PC, Schreder MJ, Guy HR, Kung C (1996) Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coll. EMBO J 15:4798–4805

    CAS  Google Scholar 

  • Certes A (1884) C R Acad Sci Paris 98:690–693

    Google Scholar 

  • Chi E, Bartlett DH (1993) Use of a reporter gene to follow high pressure signal transduction in the deep-sea bacterium Photobacterium SS9. J Bacteriol 175:7533–7540

    PubMed  CAS  Google Scholar 

  • Colwell RR, Morita RY (1964) Reisolation and emendation of description of Vibrio marinus (Russell) Ford. J Bacteriol 88:831–837

    PubMed  CAS  Google Scholar 

  • DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737

    PubMed  CAS  Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationship of cultivated psychro-philic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108

    PubMed  CAS  Google Scholar 

  • Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE (1984) The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920

    PubMed  CAS  Google Scholar 

  • Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160

    Article  Google Scholar 

  • Erdos T, Butler-Browne GS, Rappaport L (1991) Mechanogenetic regulation of transcription. Biochimie 73:1219–1231

    Article  PubMed  CAS  Google Scholar 

  • Fraser Pi, MacDonald AG (1994) Crab hydrostatic pressure sensors. Nature 371:383–384

    Google Scholar 

  • Gooch VD, Vidaver W (1980) Kinetic analysis of the influence of hydrostatic pressure on bioluminescence of Gonyaulax polyhedra. Photochem Photobiol 31:397–402

    Article  Google Scholar 

  • Gross M, Lehle K, Jaenicke R, Nierhaus KH (1993) Pressure-induced dissociation of ribo-somes and elongation cycle intermediates: stablilizing conditions and identification of the most sensitive functional state. Eur J Biochem 218:463–468

    Article  PubMed  CAS  Google Scholar 

  • Izumo S, Nadal-Ginard B, Mandavi V (1988) Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad USA 85:339–343

    Article  CAS  Google Scholar 

  • Jaenicke R, Bemdardt G, Ludemann HD, Stetter KO (1988) Pressure-induced alteration in the protein pattern of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Appl Environ Microbiol 54:2375–2380

    PubMed  CAS  Google Scholar 

  • Jannasch HW, Taylor CD (1984) Deep-sea microbiology. Annu Rev Microbiol 38:487–514

    Article  PubMed  CAS  Google Scholar 

  • Kamimura K, Fuse H, Takimura O, Yamaoka Y (1993) Effects of growth pressure and temperature on fatty acid composition of a barotolerant deep-sea bacterium. Appl Environ Mi-crobiol 59:924–926

    CAS  Google Scholar 

  • Kato C, Ikegami A, Smorawinska M, Usami R, Horikoshi K (1997a) Structure of genes in a pressure-regulated operon and adjacent regions from a barotolerant bacterium strain DSS12. J Mar Biotechnol 5:210–218

    CAS  Google Scholar 

  • Kato C, Inoue A, Horikoshi K (1996a) Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol 14:6–12

    Article  CAS  Google Scholar 

  • Kato C, Li L, Nakamura Y, Nogi Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513

    PubMed  CAS  Google Scholar 

  • Kato C, Li L, Tamegai H, Smorawinska M, Horikoshi K (1997b) A pressure-regulated gene cluster in deep-sea adapted bacteria with reference to its distribution. Recent Res Dev Agric Biol Chem 1:25–32

    CAS  Google Scholar 

  • Kato C, Masui N, Horikoshi K (1996b) Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the lzu-Bonin Trench. J Mar Biotechnol 4:96–99

    Google Scholar 

  • Kato C, Sato T, Horikoshi K (1995a) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Consery 4:1–9

    Article  Google Scholar 

  • Kato C, Sato T, Smorawinska M, Horikoshi K (1994) High pressure conditions stimulate expression of chloramphenicol acetyltransferase regulated by the lac promoter in Escherichia coll. FEMS Microbiol Lett 122:91–96

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Smorawinska M, Sato T, Horikoshi K (1995b) Cloning and expression in Escherichia cob of a pressure-regulated promoter region from a barophilic bacterium, strain DB6705. J Mar Biotechnol 2:125–129

    CAS  Google Scholar 

  • Kato C, Smorawinska M, Sato T, Horikoshi K (1996c) Analysis of a pressure-regulated operon from the barophilic bacterium strain DB6705. Biosci Biotechnol Biochem 60:166–168

    Article  CAS  Google Scholar 

  • Kato C, Suzuki S, Hata S, Ito T, Horikoshi K (1995c) The properties of a protease activated by high pressure from Sporosarcina sp. strain DSK25 isolated from deep-sea sediment. JAMSTEC R 32:7–13

    Google Scholar 

  • Kato C, Tamegai H, Ikegami A, Usami R, Horikoshi K (1996d) Open reading frame 3 of the barotolerant bacterium strain DSS12 is complementary with cydD in Escherichia coli: cydD functions are required for cell stability at high pressure. J Biochem 120:301–305

    Article  CAS  Google Scholar 

  • Kreig NR, Holt JG (1984) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore

    Google Scholar 

  • Kyo M, Miyazaki E, Tsukioka S, Ochi H, Amitani Y, Tsuchiya T, Aoki T, Takagawa S (1995) The sea trial of “KAIKO,” the full ocean depth research ROV. Oceans’95 3:1991–1996

    Google Scholar 

  • Latz MI, Case JF, Gran RL (1994) Excitation of bioluminescence by laminar fluid shear associated with simple Couette flow. Limnol Oceanogr 39:1424–1439

    Article  Google Scholar 

  • Li L, Kato C, Nogi Y, Horikoshi K (1998) Distribution of the pressure-regulated operons in deep-sea bacteria. FEMS Microbiol Lett 159:159–166

    Article  PubMed  CAS  Google Scholar 

  • Liesack W, Weyland H, Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed culture of strict barophilic bacteria. Microb Ecol 21:191–198

    Article  CAS  Google Scholar 

  • MacDonald AG, Cossins AR (1985) The theory of homeoviscous adaptation of membranes applied to deep-sea animals. Soc Exp Biol Symp 39:301–322

    CAS  Google Scholar 

  • MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182

    Article  CAS  Google Scholar 

  • Nakashima K, Horikoshi K, Mizuno T (1995) Effect of hydrostatic pressure on the synthesis of outer membrane proteins in Escherichia coli. Biosci Biotechnol Biochem 59:130–132

    Article  PubMed  CAS  Google Scholar 

  • Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expres-sion controlled by pressure in deep-sea microorganisms. Extremophiles 2:149–154

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and Moritella yayanosii sp. nov., a new barophilic bacterial species. Extremophiles 3:71–77

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998a) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295

    Article  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998b) Taxonomic studies of deep-sea barophilic Shewanella species and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch Microbiol 170:331–338.

    Article  CAS  Google Scholar 

  • Nogi Y, Masui N, Kato C (1998c) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7

    Article  CAS  Google Scholar 

  • Pelster B, Scheid P (1992) Countercurrent concentration and gas secretion in the fish swim bladder. Physiol Zool 65:1–16

    Google Scholar 

  • Poole RK, Gibson F, Wu G (1994) The cydD gene product, componentof a heterodimeric ABC transporter, is required for assembly of periplasmeric cytochrome c and of cytochrome bd in Escherichia coli. FEMS Microbiol Lett 117:217–224

    Article  PubMed  CAS  Google Scholar 

  • Qureshi MH, Kato C, Horikoshi K (1998a) Purification of two pressure-regulated c-type cytochromes from a deep-sea barophilic bacterium, Shewanella sp. strain DB-172E FEMS Microbiol Lett 161:301–309

    Article  CAS  Google Scholar 

  • Qureshi MH, Kato C, Horikoshi K (1998b) Purification of a ccb-type quinol oxidase specifically induced in a deep-sea barophilic bacterium, Shewanella sp. strain DB-172E Extremophiles 2:93–99

    CAS  Google Scholar 

  • Richard J (1907) L’Oceanographie. Vuibert & Nony, Paris

    Google Scholar 

  • Sato T, Kato C, Horikoshi K (1995) The effect on high pressure on gene expression by the lac and tac promoters in Escherichia coli. J Mar Biotechnol 3:89–92

    CAS  Google Scholar 

  • Sato T, Nakamura Y, Nakashima K, Kato C, Horikoshi K (1996) High pressure represses expression of the malB operon in Escherichia coli. FEMS Microbiol Lett 135:111–116

    Article  PubMed  CAS  Google Scholar 

  • Takagawa S, Takahashi K, Sano T, Mori Y, Nakanishi T, Kyo M (1989) 6500 m Deep manned research submersible “Shinkai 6500” system. Oceans’ 89 3:741–746

    Google Scholar 

  • Tamegai H, Kato C, Horikoshi K (1998) Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. strain DSS12. J Biochem Mol Biol Biophys 1:213–220

    CAS  Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Steven SE, Ohwada K, Colwell RR (1998) A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378

    Article  PubMed  CAS  Google Scholar 

  • Welch TJ, Bartlett DH (1998) Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol Microbiol 27:977–985

    Article  PubMed  CAS  Google Scholar 

  • Welch TJ, Farewell A, Neidhardt FC, Bartlett DH (1993) Stress response in Escherichia coli induced by elevated hydrostatic pressure. J Bacteriol 175:7170–7177

    PubMed  CAS  Google Scholar 

  • Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K’ in turgor regulation. J Gen Microbiol 136:2521–2526

    Article  PubMed  CAS  Google Scholar 

  • Wirsen CO, Jannasch HW, Wakeham SG, Cannel EA (1987) Membrane lipids of a psychrophilic and barophilic deep-sea bacterium. Curr Microbiol 14:319–322

    Article  CAS  Google Scholar 

  • Yayanos AA (1986) Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA 83:9542–9546

    Article  PubMed  CAS  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol 49:777–805

    Article  PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Boxtet RV (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810

    Article  PubMed  CAS  Google Scholar 

  • Yayanos AA, Dietz AS, Boxtel RV (1982) Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appt Environ Microbiol 44:1356–1361

    CAS  Google Scholar 

  • ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this chapter

Cite this chapter

Kato, C. (1999). Barophiles (Piezophiles). In: Horikoshi, K., Tsujii, K. (eds) Extremophiles in Deep-Sea Environments. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67925-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67925-7_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68008-6

  • Online ISBN: 978-4-431-67925-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics