Advertisement

Computational Fluid Dynamics as a Tool to Develop the Artificial Heart

  • Toru Masuzawa
  • Takashi Yamane
  • Yuki Tsukamoto

Summary

Hemolysis tests, flow visualization, and the CFD analysis were carried out to examine the feasibility of the CFD analysis as a development tool to optimize the hemocompatibility of the centrifugal blood pump. The Nikkiso centrifugal blood pump was used as the standard model, and the pumps were tested with different values of two geometrical parameters. The studied parameters were radial gaps between the outer edge of the impeller vane and the casing wall and position of the outlet port. The effect of the narrow radial gap on hemolysis was consistent, with no evidence that the outlet port position caused blood trauma. Results of the CFD analysis and the flow visualization indicated similar flow characteristics in the outlet region. It is possible of determine the threshold level of shear stress required to produce blood trauma, based on the CFD analysis. This will enable us to define design criteria for the centrifugal blood pump.

Keywords

Flow Visualization Maximum Shear Stress Shear Stress Distribution Artificial Heart Computational Fluid Dynamic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki K, Taenaka Y, Masuzawa T, Inoue K, Nakatani T, Kinoshita M, Akagi H, Baba Y, Matsuo Y, Sakaki M, Anai H, Takano H (1993) A flow visualization study of centrifugal blood pumps developed for long-term usage. Artif Organs 17(5):307–312CrossRefGoogle Scholar
  2. Araki K, Taenaka Y, Wakisaka Y, Masuzawa T, Tatsumi E, Nakatani T, Baba Y, Yagura A, Eya K, Toda K, Takano H, Koga Y (1995) Heat generation and hemolysis at the shaft seal in centrifugal blood pumps. ASAIO J 41: M284–M287CrossRefGoogle Scholar
  3. Araki K, Taenaka Y, Masuzawa T, Tatsumi E, Wakisaka Y, Watari M, Nakatani T, Akagi H, Baba Y, Anai H, Park YH, Eya K, Toda K, Takano H (1995) Hemolysis and heat generation in six different types of centrifugal blood pumps. Artif Organs 19(9):928–932CrossRefGoogle Scholar
  4. Asztalos B, Yamane T, Nishida M (1999) Flow visualization analysis for evaluation of shear and recirculation in a new closed-type, mono-pivot centrifugal blood pump. Artif Organs 23(10):939–946CrossRefGoogle Scholar
  5. Bludszuweit C (1995) Model for a general mechanical blood damage prediction. Artif Organs 19(7):583–589CrossRefGoogle Scholar
  6. Bludszuweit C (1995) Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif Organs 19(7):590–596CrossRefGoogle Scholar
  7. Blackshear PL, Blackshear GL. (1987) Mechanical Hemolysis. In: Skalak R, Chien S, eds. Handbook of bioengineering. New York: McGraw-Hill Book Co.:15.1–19Google Scholar
  8. Ikeda T, Yamane T, Orita T, Tateishi T (1996) A quantitative visualization study of flow in a scaled-up model of a centrifugal blood pump. Artif Organs 20(2):132–138CrossRefGoogle Scholar
  9. Masuzawa T, Tsukiya T, Endo S, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Miyazoe Y, Ito K, Sawairi T, Konishi Y (1999) Development of design methods for a centrifugal blood pumps with a fluid dynamic approach: Results in hemolysis tests. Artif Organs 23(8):757–761CrossRefGoogle Scholar
  10. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M, Masuzawa T, Takiura K, Taenaka Y (1998) Computational fluid dynamic analyses to establish design process of centrifugal blood pumps. Artif Organs 22(5):381–385CrossRefGoogle Scholar
  11. Miyazoe Y, Sawairi T, Ito K, Konishi Y, Yamane T, Nishida M, Masuzawa T, Tsukiya T, Endo S, Taenaka Y (1999) CFD analyses to establish design process of a centrifugal blood pump -Second report-. Artif Organs 23(8):762–768CrossRefGoogle Scholar
  12. Naito K, Mizuguchi K, Nose Y (1994) The need for standardizing the Index of Hemolysis. Artif Organs 18(1):7–10CrossRefGoogle Scholar
  13. Nishida M, Yamane T, Asztalos B, Masuzawa T, Tsukiya T, Endo S, Taenaka Y, Miyazoe Y, Ito K, Konishi Y (1999) Flow visualization study as a complementary tool to improve hemocompatibility of a centrifugal blood pump. Artif Organs 23(8):697–703CrossRefGoogle Scholar
  14. Ohtsubo S, Naito K, Matsuura M, Kawahito K, Shimono T, Makinouchi K, Tasai K, Ohara Y, Damm G, Glueck J, Raskin S, Takatani S, Benkowski R, Short DH, Schinen SA, Noon GP, Nose Y (1995) Initial clinical experience with the Baylor-Nikkiso centrifugal pump. Artif Organs 19(7):769–773CrossRefGoogle Scholar
  15. Schima H, Muller MR, Papantonis D, Schlusche C, Huber L, Schmidt C, Trubel W, Thoma H, Losert U, Wolner E (1992) Minimization of hemolysis in centrifugal blood pump: influence of different geometries. Int J Artif Organs 16(7):521–529Google Scholar
  16. Schima H, Muller MR, Tsangaris S, Gheiseder G, Schlusche C, Losert U, Yhoma H, Wolner E (1993) Mechanical blood traumatization by tubing and throttles in in vitro pump tests: Experimental results and implications for hemolysis theory. Artif Organs 17(3):164–170CrossRefGoogle Scholar
  17. Sukumar R, Athavale MM, Makhijani VB, Przekwas AJ (1996) Application of computational fluid dynamics techniques to blood pumps. Artif Organs 20(6):529–533CrossRefGoogle Scholar
  18. Takiura K, Masuzawa T, Endo S, Wakisaka Y, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Konishi Y, Miyazoe Y, Ito K (1998) Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests. Artif Organs 22(5):393–398CrossRefGoogle Scholar
  19. Wernicke JT, Meier D, Mizuguchi K, Damm G, Aber G, Benkowski R, Nose Y, Noon GP, DeBakey ME (1995) A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement. Artif Organs 19(2):161–177CrossRefGoogle Scholar
  20. Yamane T, Nishida M, Asztalos B, Tsutsui T, Jikuya T (1997) Fluid dynamic characteristics of monopivot magnetic suspension blood pumps. ASAIO J 43:M635–638CrossRefGoogle Scholar
  21. Yamane T, Asztalos B, Nishida M, Masuzawa T, Takiura K, Taenaka Y, Konishi Y, Miyazoe Y, Ito K (1998) Flow visualization as a complementary tool to hemolysis testing in the development of centrifugal blood pump. Artif Organs 22(5):375–380CrossRefGoogle Scholar
  22. Yeleswarapu KK, Antaki JF, Kameneva MV, Rajagopal KR (1995) A mathematical model for shear-induced hemolysis. Artif Organs 19(7):576–582CrossRefGoogle Scholar

Copyright information

© Springer Japan 2000

Authors and Affiliations

  • Toru Masuzawa
    • 1
  • Takashi Yamane
    • 2
  • Yuki Tsukamoto
    • 3
  1. 1.Department of Mechanical Engineering, School of EngineeringIbaraki UniversityNakanarusawa, HitachiJapan
  2. 2.Biomimetics DivisionMechanical Engineering LaboratoryNamiki, TsukubaJapan
  3. 3.R&D Center, Shizuoka PlantNikkiso Co.Haibara-cho, Haibara-gunJapan

Personalised recommendations