Skip to main content

Ultrafast Neural Network Training for Robot Learning from Uncertain Data

  • Chapter
Distributed Autonomous Robotic Systems 4
  • 696 Accesses

Abstract

A capability for learning from uncertain data has been a major and perennial requirement for many real-life robotic applications. In that context, a new methodology for ultrafast learning using neural networks is presented. It requires only a single iteration to train a feed-forward network with near-optimal results. Uncertainty reduction algorithms are also incorporated in a natural and optimal fashion. As such, this methodology is intended to become an essential building block for future architectures of intelligent systems. Its application to multi-robot observation of multiple moving targets is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.-I. Amari and M. Arbib, Competition and Cooperation in Neural Networks ,Springer (1982).

    Book  Google Scholar 

  2. S. Grossberg, The Adaptive Brain, I: Cognition, Learning, Reinforcement, and Rhythm ,Elsevier (1987).

    Google Scholar 

  3. S. Grossberg, The Adaptive Brain, II: Vision, Speech, Language, and Motor Control ,Elsevier (1987).

    Google Scholar 

  4. R. Arkin, Behavior-Based Robotics ,MIT Press (1998).

    Google Scholar 

  5. D. Rumelhart and J. McLelland, Parallel Distributed Processing ,MIT Press (1986).

    Google Scholar 

  6. D. Waterman and F. Hayes-Roth, Pattern-Directed Inference Systems ,Academic Press (1978).

    MATH  Google Scholar 

  7. J. Barhen, W. Dress, and C. Jorgensen, “Application of Concurrent Neuromorphic Algorithms to Autonomous Robots”, in Neural Computers ,NATO ASI ,F41, pp. 321–334, Springer (1988)

    Google Scholar 

  8. J. Barhen, M. Zak, and N. Toomarian, “Non-Lipschitzian Neural Dynamics”, in Advanced Neural Computers ,R. Eckmiller, ed., pp. 103–112, North Holland (1990)

    Google Scholar 

  9. N. Toomarian, J. Barhen, and S. Gulati, “Neural Networks for Real-Time Robotic Applications”, in Parallel Computation Systems for Robotics ,A. Fijany and A. Bejczy eds., pp. 213–247, World Scientific (1992).

    Chapter  Google Scholar 

  10. G. Bekey and K. Goldberg, Neural Networks in Robotics ,Kluwer (1993).

    Book  MATH  Google Scholar 

  11. O. Omidvar and P. van der Smagt, Neural Systems for Robotics ,Academic Press (1997).

    Google Scholar 

  12. R. Brooks, S. Grossberg, and L. Optican, eds, “Neural Control and Robotics”, special issue of Neural Networks ,11, no. 7-8 (1998).

    Google Scholar 

  13. T. Ziemke and N. Sharkey, eds, “Artificial Neural Networks for Robot Learning”, special issue of Autonomous Robots ,7, no. 7 (1999).

    Google Scholar 

  14. L. Parker and C. Touzet, “Multi-Robot Learning in a Cooperative Observation Task”, in Distributed Autonomous Robotic Systems 4 ,L. Parker, G. Bekey, and J. Barhen eds.. Springer (in press, 2000).

    Google Scholar 

  15. C. Touzet, “Distributed Lazy Q-learning for Cooperative Mobile Robots”, Autonomous Robots (in press, 2000).

    Google Scholar 

  16. A. Agah and G. Bekey, “Cognitive Architecture for Robust Adaptive Control of Robots in a Team”, Journal of Intelligent and Robotic Systems ,20, 251–273 (1997).

    Article  Google Scholar 

  17. M. Hassoun, Fundamentals of Artificial Neural Networks ,MIT Press (1995).

    Google Scholar 

  18. M. Bishop, Neural Networks for Pattern Recognition ,Oxford University Press (1997).

    Google Scholar 

  19. M. Beckerman, Adaptive Cooperative Systems ,Wiley Interscience (1997).

    Google Scholar 

  20. D. White and D. Sofge, Handbook of Intelligent Control: Neural Fuzzy and Adaptive Approaches ,Van Nostrand Reinhold (1992).

    Google Scholar 

  21. A. Cichocki and R. Unbenhauen, Neural Networks for Optimization and Signal Processing ,Wiley (1993).

    MATH  Google Scholar 

  22. P. Mars, J. Chen, and R. Nambiar, Learning Algorithms ,CRC Press (1996).

    Google Scholar 

  23. N. Toomarian and J. Barhen, “Learning a Trajectory using Adjoint Functions and Teacher Forcing”, Neural Networks ,5,473–484 (1992).

    Article  Google Scholar 

  24. N. Toomarian and J. Barhen, “Fast Temporal Neural Learning Using Teacher Forcing”, U.S. Patent No. 5,428,710 (March 28,1995).

    Google Scholar 

  25. Y. Chauvin and D. Rumelhart, Backpropagation: Theory, Architectures, and Applications ,Lawrence Erlbaum (1995).

    Google Scholar 

  26. J. Barhen, S. Gulati, and M. Zak, “Neural Learning of Constrained Nonlinear Transformations”, IEEE Computer ,22(6), 67–76 (1989).

    Article  Google Scholar 

  27. J. Barhen, N. Toomarian, and S. Gulati, “Applications of Adjoint Operators to Neural Networks”, Appl. Math. Lett. ,3(3), 13–18 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  28. N. Toomarian and J. Barhen, “Neural Network Training by Integration of Adjoint Systems of Equations Forward in Time”, U.S. Patent No. 5,930,781 (July 27,1999).

    Google Scholar 

  29. J. Barhen, V. Protopopescu, and D. Reister, “TRUST: A Deterministic Algorithm for Global Optimization”, Science ,276,1094–1097 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Shepherd, Second-Order Methods for Neural Networks ,Springer (1997).

    Book  Google Scholar 

  31. F. Biegler-Konig and F. Barman, “A Learning Algorithm for Multilayered Neural Networks based on Linear Least Squares Problems”, Neural Networks ,6,127–131 (1993).

    Article  Google Scholar 

  32. J. Barhen, R. Cogswell, and V. Protopopescu, “Single Iteration Training Algorithm for Multi-layer Feed-forward Neural Networks,” Neural Proc. Lett ,11(2) (in press, 2000).

    Google Scholar 

  33. J. Barhen, D.Reister, and V. Protopopescu, “DeepNet An Ultrafast Neural Learning Code for Seismic Imaging”, Procs. IJCNN’99 ,CD-ROM, IEEE Press (1999).

    Google Scholar 

  34. G. Golub and C. Van Loan, Matrix Computations ,Johns Hopkins University Press (1983).

    Google Scholar 

  35. C. Weisbin et al ,“Sensitivity and Uncertainty of Reactor Performance Parameters”, in Advances in Nuclear Science and Technology ,14, Plenum Press, New York (1981).

    Google Scholar 

  36. D. Cacuci et al ,“Sensitivity Theory for General Systems of Non-linear Equations”, Nucl. Sci. Eng. ,75, 88–110 (1980).

    Google Scholar 

  37. R. Alsmiller, J. Barhen, and J. Horwedel, “The Application of Adjoint Sensitivity Theory to a Liquid Fuels Supply Model”, Energy ,9, 239–253 (1984).

    Article  Google Scholar 

  38. D. Reister and J. Barhen, “Application of Sensitivity and Uncertainty Analysis to the Estimation of Methane Hydrate Concentration”, Jour, of Petroleum Science and Engineering (in preparation, 2000).

    Google Scholar 

  39. D. Cox and P. Baybutt, “Methods for Uncertainty Analysis: A Comparative Survey”, Risk Analysis ,1(4), 251–258 (1981).

    Article  Google Scholar 

  40. R. Myers, Response Surface Methodology ,Edwards Bros. (1976).

    Google Scholar 

  41. B. Kosko, Fuzzy Engineering ,Prentice Hall (1996).

    Google Scholar 

  42. A. Dubrawski, “Stochastic Validation for Automated Tuning of Neural Network’s Hyper Parameters”, Robotics and Autonomous Systems ,21, 83–93 (1997).

    Article  Google Scholar 

  43. F. Aminzadeh, J. Barhen, C. Glover, and N. Toomarian, “Estimation of Reservoir Parameters using a Hybrid Neural Network”, Jour, of Petroleum Science & Engineering ,24,49–56 (1999).

    Article  Google Scholar 

  44. J. Barhen, D. Cacuci, J. Wagschal, and M. Bjerke, “Uncertainty Analysis of Time-Dependent Nonlinear Systems”, Nuclear Science &Engineering ,81(1), 23–44 (1982).

    Google Scholar 

  45. J. Tolma and P. Barton, “On Computational Differentiation”, Comp. Chem. Engin. ,22(4/5), 475–490 (1998).

    Article  Google Scholar 

  46. J. Barhen, N. Toomarian and V. Protopopescu, “Optimization of the Computational Load of a Hypercube Supercomputer Onboard a Mobile Robot”, Applied Optics ,26 (23), 5007–5014 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Barhen, J., Protopopescu, V. (2000). Ultrafast Neural Network Training for Robot Learning from Uncertain Data. In: Parker, L.E., Bekey, G., Barhen, J. (eds) Distributed Autonomous Robotic Systems 4. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67919-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67919-6_38

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67991-2

  • Online ISBN: 978-4-431-67919-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics