Control architecture for an underwater robot society

  • Mika Vainio
  • Pekka Appelqvist
  • Aarne Halme


In this paper a new three layer control architecture for a multi-robot systems is presented. The architecture is tested in an underwater robot society performing distributed operations in closed aquatic environment. In these tests the performance of three and five member societies is compared to the performance of a single robot.


Control Architecture Finite State Automaton Cleaning Agent Individual Robot Spherical Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Hölldobler, E. O. Wilson.(1990) The Ants. Belknap Press, Cambridge, Mass.Google Scholar
  2. 2.
    T. Fukuda, S. Nakagawa, K. Kawauchi, M. Buss.(1989) Structure Decision Method for Self Organizing Robots based on Cell Structure -CEBOT, Proceedings of 1989 IEEE Int. Conference on Robotics and Automation ,695–700.CrossRefGoogle Scholar
  3. 3.
    H. Asama, A. Matsumoto, Y. Ishida.(1989) Design of an Autonomous and Distributed Robot System: ACTRESS, Proceedings of IEEE/RSJ Int. Workshop on Intelligent Robots and Systems ,283–290.Google Scholar
  4. 4.
    K. Dautenhahn (1995) Getting to Know Each Other-Artificial Social Intelligence for Autonomous Robots, Robotics and Autonomous Systems ,Vol. 16, Nos. 2–4,333–356.CrossRefGoogle Scholar
  5. 5.
    M. J. Mataric (1994) Learning to Behave Socially, Proceedings of From Animals to Animats 3 ,(Third Int. Conf. on Simulation of Adaptive Behavior), D. Cliff, P. Husbands, J.-A. Meyer and S. W. Wilson, (Eds.), MIT Press, 453–462.Google Scholar
  6. 6.
    L. E. Parker (1994) Heterogeneous Multi-Robot Cooperation, Ph.D.Thesis ,Massachusetts Institute of Technology, Artificial Intelligence Laboratory, MA, MIT-AI-TR 1465.Google Scholar
  7. 7.
    T. Balch (1998) Behavioral Diversity in Learning Robot Teams, Ph.D. Thesis ,College of Computing, Georgia Institute of Technology.Google Scholar
  8. 8.
    A. Halme, P. Jakubik, T. Schönberg, M. Vainio (1993) The concept of robot society and its utilization, Proceedings of the IEEE/Tsukuba International Workshop on Advanced Robotics, 29 -35.CrossRefGoogle Scholar
  9. 9.
    M. Vainio, A. Halme, P. Appelqvist, P. Kähkönen, P. Jakubik, T. Schönberg, Y. Wang (1996) An application concept of an underwater robot society, Distributed Autonomous Robotic Systems 2 ,H. Asama, T. Fukuda, T. Arai, I. Endo, (Eds.), Springer-Verlag, 103 -114.Google Scholar
  10. 10.
    M. Vainio, P. Appelqvist, A. Halme (1998) Generic Control Architecture for a Cooperative Robot System, 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1119–1125.Google Scholar
  11. 11.
    M. Vainio (1999) Intelligence through Interactions-Underwater robot society for distributed operations in closed aquatic environment, Ph.D. Thesis ,Department of Automation and Systems Technology, Helsinki University of Technology.Google Scholar
  12. 12.
    P. Appelqvist, M. Vainio, A. Halme (1998) Mechatronical design of underwater sensor/actuator robots for cooperative task execution, Proceedings of Mechatronics’98 ,249 -254.Google Scholar
  13. 13.
    M. Vainio, P. Appelqvist, A. Halme (2000) Mobile Robot Society for Distributed Operations in Closed Aquatic Environment, Robotica ,Vol. 18, Issue 3, 235–250.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2000

Authors and Affiliations

  • Mika Vainio
    • 1
  • Pekka Appelqvist
    • 1
  • Aarne Halme
    • 1
  1. 1.Automation Technology LaboratoryHelsinki University of Technology, HUTFinland

Personalised recommendations