Advertisement

A constructive proof of the Fefferman- Stein decomposition of BMO

  • Akihito Uchiyama
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

Let
$$ S_{\vec R} \left\{ {\left( {f, - R_1 f, \cdots , - R_n f} \right):f \in H^1 \left( {{\text{R}}^n ,{\text{R}}} \right)} \right\} \subset H^1 \left( {{\text{R}}^n ,{\text{R}}^{n + 1} } \right) $$
(22.1)
$$ \begin{gathered} S_{\vec R} \left\{ {\vec g = \left( {g_j } \right)_{j = 0, \cdots ,n} } \right. \in {\text{BMO}}\left( {{\text{R}}^n ,{\text{R}}^{n + 1} } \right): \\ \sum\limits_{j = 0}^n {\vec R_j } g_j = 0{\text{ in BMO}}\left( {{\text{R}}^n ,{\text{R}}^{n + 1} } \right)\left. {/{\text{R}}} \right\} \\ \end{gathered} $$
(22.2)
. j=0

Keywords

Euclidean Space Number Theory Algebraic Geometry Hardy Space Point Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Japan 2001

Authors and Affiliations

  • Akihito Uchiyama

There are no affiliations available

Personalised recommendations