Advertisement

The Future of Neuropsychiatry

  • Colin M. Shapiro
  • Madeline Li
  • Alan Ong
  • Ajmal Razmy
  • Tonia Seli
Conference paper

Abstract

The coming era of neuropsychiatry will be one of unparalleled discovery. Advances in the realms of functional neuroimaging and molecular biology will be translated into greater understanding of, and improved therapy for, neuropsychiatric diseases. The clinical epidemiology of neuropsychiatric disorders will provide a more accurate measure of the global impact of these illnesses. With the aging population, neuropsychiatric disorders will become more prevalent. The understanding of what neuropsychiatry embraces will change as we learn more about the mind and the disorders that tread the line between traditional neurology and psychiatry. The appreciation of the relevance of diverse disciplines such as anthropology, psychology, and physiology to the conceptualization of neuropsychiatry will become more apparent.

Keywords

Positron Emission Tomography Attention Deficit Hyperactivity Disorder Single Photon Emission Computerize Tomography Obsessive Compulsive Disorder Neuropsychiatric Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreason NC (1988) Brain imaging: applications in psychiatry. Science 239:1381–1388CrossRefGoogle Scholar
  2. Baron M (1995) Neurogenetic determinism. Nature 375:351PubMedCrossRefGoogle Scholar
  3. Baxter LR, Schwartz JM, Bergman KS, et al (1992) Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry 49:681–689PubMedCrossRefGoogle Scholar
  4. Beauregard M, Leroux JM, Bergman S, et al (1998) The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport 9:3253–3258PubMedCrossRefGoogle Scholar
  5. Bookheimer SY, Strojwas MH, Cohen MS, et al (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343:450–456PubMedCrossRefGoogle Scholar
  6. Bradwejn J, Koszycki D, Paradis M, et al (1995) Effect of CI-988 on cholecystokinin tetrapeptide-induced panic symptoms in healthy volunteers. Biol Psychiatry 38:742–746PubMedCrossRefGoogle Scholar
  7. Bremner JD (1995) MRI-based measurement of hippocampal volume in patients with combat-related PTSD. Am J Psychiatry 152:973–981PubMedGoogle Scholar
  8. Buchsbaum MS (1986) Frontal cortex and basal ganglia metabolic rates assessed by PET with [18Fl 2-deoxyglucose in affective illness. J Affective Disorders 10:137–152CrossRefGoogle Scholar
  9. Buchsbaum MS (1996) PET and MRI of the thalamus in never-medicated patients with schizophrenia. Am J Psychiatry 153:191–199PubMedGoogle Scholar
  10. Castellanos FX (1996) Quantitative brain magnetic resonance imaging in ADHD. Arch Gen Psychiatry 53:607–616PubMedCrossRefGoogle Scholar
  11. Chemelli RM, Willie JT, Sinton CM, et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451PubMedCrossRefGoogle Scholar
  12. Cotterill R (1998) Enchanted looms: consciousness networks in brains and computers. Cambridge University Press, CambridgeGoogle Scholar
  13. Crick F (1994) The astonishing hypothesis: the scientific search for the soul. Scribner, New YorkGoogle Scholar
  14. Damasio A (1999) The feeling of what happens: body and emotion in the making of consciousness. Harcourt Brace Jovanovich, New YorkGoogle Scholar
  15. Dolan RJ, Friston KJ (1997) Functional imaging and neuropsychiatry. Psychol Med 27:1241–1246PubMedCrossRefGoogle Scholar
  16. Drouet B, Pincon-Raymond M, Chambaz J, et al (2000) Molecular basis of Alzheimer’s disease. Cell Mol Life Sci 57(5):705–715PubMedCrossRefGoogle Scholar
  17. Dupont RM (1995) Magnetic resonance imaging and mood disorders: localization of white matter and other subcortical abnormalities. Dig Neurol Psychiatry 52:747–755Google Scholar
  18. Ebert D (1993) A test-retest study of cerebral blood flow during somatosensory stimulation in depressed patients with schizophrenia and major depression. Eur Arch Psychiatry Clin Neurosci 242:250–254Google Scholar
  19. Edelman G (1989) The remembered present: a biological theory of consciousness. Basic Books, New YorkGoogle Scholar
  20. Edelman G (1992) Bright air, brilliant fire: on the matter of the mind. Basic Books, New YorkGoogle Scholar
  21. Ekman A, Nissbrandt H, Heilig M, et al (1998) Central administration of dopamine D3 receptor antisense to rat: effects on locomotion, dopamine release and [3H]spiperone binding. Naunyn Schmiedebergs Arch Pharmacol 358:342–350PubMedCrossRefGoogle Scholar
  22. Farmer A, Owen M, McGuffin P (2000) Bioethics and genetic research in psychiatry. Br J Psychiatry 176:105–108PubMedCrossRefGoogle Scholar
  23. Flint J, Corley R (1996) Do animal models have a place in the genetic analysis of quantitative human behavioral traits? J Mol Med 74(9):515–521PubMedCrossRefGoogle Scholar
  24. Freeman W (1995) Societies of brains: a study in the neuroscience of love and hate. Erlbaum, HillsdaleGoogle Scholar
  25. Frith CD, Friston KJ, Herold S, et al (1995) Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. BMJ 167:343–349Google Scholar
  26. Gazzaniga M (1998) The split brain revisited. Sci Am 279:35–39CrossRefGoogle Scholar
  27. Gerwitz G (1994) Results of computerized tomography during first admission for psychosis. Br J Psychiatry 164:789–795CrossRefGoogle Scholar
  28. Grachev ID, Breiter HC, Rauch SL (1998) Structural abnormalities of frontal neocortex in obsessive-compulsive disorder. Arch Gen Psychiatry 55:181–182PubMedCrossRefGoogle Scholar
  29. Greenfield S (1998) Brain drugs of the future. Br Med J 317:1698–1701CrossRefGoogle Scholar
  30. Gur RE (1994) Clinical subtypes of schizophrenia: differences in brain and CSF volume. Am J Psychiatry 151:343–350PubMedGoogle Scholar
  31. Hardy J, Israel A (1999) Alzheimer’s disease: in search of gamma-secretase. Nature 398:466–467PubMedCrossRefGoogle Scholar
  32. Hobson J (1999) Consciousness. Scientific American Lib./Freeman, New YorkGoogle Scholar
  33. Holscher C (1999) Consciousness in mind: a correlate for ACh? Trends Neurosci 22:541–542PubMedCrossRefGoogle Scholar
  34. Honey GD, Soni W, Bullmore ET, et al (1998) Dissecting the components of linguistic processing in schizophrenia using functional MRI. Schizophrenia Res 29:65CrossRefGoogle Scholar
  35. Hyde TM (1991) Neuroanatomical and neurochemical pathology in schizophrenia. In: Tasman, Goldfinger (eds) Review of psychiatry. American Psychiatric Association Press, Washington, DC, pp 7–23Google Scholar
  36. Janus C, Chisti M, Westaway D (2000) Transgenic mouse models of Alzheimer’s disease. Biochim Biophys Acta 1502:63–75PubMedCrossRefGoogle Scholar
  37. Kramer MS, Cutler N, Feighner J, et al (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281:1640–1645PubMedCrossRefGoogle Scholar
  38. Lang AE, Lozano AM (1998a) Parkinson’s disease. N Engl J Med 339:1044–1053PubMedCrossRefGoogle Scholar
  39. Lang AE, Lozano AM (1998b) Parkinson’s disease. N Engl J Med 339:1130–1143PubMedCrossRefGoogle Scholar
  40. Le Merrer J, Nogues X (2000) Cognitive neuropharmacology: new perspectives for the pharmacology of cognition. Pharmacol Res 41:503–514PubMedCrossRefGoogle Scholar
  41. Libet B (1993) Neurophysiology of consciousness: selected papers and new essays. Birkhauser, BostonGoogle Scholar
  42. Lin L, Faraco J, Li R, et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376PubMedCrossRefGoogle Scholar
  43. Longworth C, Honey G, Sharma T (1999) Functional magnetic resonance imaging in neur9psychiatry. BMJ 319:1551–1554PubMedCrossRefGoogle Scholar
  44. Markowitsch HJ, Kessler J, Van Der Ven C, et al (1998) Psychic trauma causing grossly reduced brain metabolism and cognitive deterioration. Neuropsychologia 36: 77–82PubMedCrossRefGoogle Scholar
  45. McCleane GJ (1998) The cholecystokinin antagonist proglumide enhances the analgesic efficacy of morphine in humans with chronic benign pain. Anesth Analg 87:1117–1120PubMedGoogle Scholar
  46. Menon RS, Luknowsky DC, Gati JS (1998) Mental chronometry using latency-resolved functional MRI. Proc Natl Acad Sci USA 95:10902–10907PubMedCrossRefGoogle Scholar
  47. Moldin S (1999) Report of the NIMH’s genetics workgroup-summary of research. Biol Psychiatry 45:573–602CrossRefGoogle Scholar
  48. Nemeroff CB (1991) The neurobiology of neuropeptides: an Introduction. In: Nemeroff CB (ed) Neuropeptides and psychiatric disorders. American Psychiatric Press, Washington, DC, pp 3–11Google Scholar
  49. McCarthy JR, Heinrichs SC, Grigoriadis DE (1999) Recent advances with the CRF1 Receptor: design of small molecule inhibitors, receptor subtypes and clinical indications. Curr Pharmacol Design 5:289–315Google Scholar
  50. McCleane GJ (1998) The cholecystokinin antagonist proglumide enhances the analgesic efficacy of morphine in humans with chronic benign pain. Anesth Analg 87:1117–1120PubMedGoogle Scholar
  51. Menon RS, Luknowsky DC, Gati JS (1998) Mental chronometry using latency-resolved functional MRI. Proc Natl Acad Sci USA 95:10902–10907PubMedCrossRefGoogle Scholar
  52. Moldin S (1999) Report of the NIMH’s genetics workgroup-summary of research. Biol Psychiatry 45:573–602CrossRefGoogle Scholar
  53. Nemeroff CB (1991) The neurobiology of neuropeptides: an Introduction. In: Nemeroff CB (ed) Neuropeptides and psychiatric disorders. American Psychiatric Press, Washington, DC, pp 3–11Google Scholar
  54. Nemeroff CB (2000) Clinical studies on the role of CRF in mood and anxiety disorders. Neuropsychopharmacology 23(No. S2):S5Google Scholar
  55. O’Brien J, Eagger S, Syed G, et al (1992) A study of regional cerebral blood flow and cognitive performance in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 55:1182–1187PubMedCrossRefGoogle Scholar
  56. O’Connel RA (1995) Single photon emission computerized tomography of the brain in acute mania and schizophrenia. J Neuroimaging 5:101–104Google Scholar
  57. Ogawa S, Lee TM, Kay DW, et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  58. Owen M (2000) Molecular genetic studies of schizophrenia. Brain Res Rev 2:179–186CrossRefGoogle Scholar
  59. Owen M, Cardno A, O’Donovan M (2000) Psychiatric genetics: back to the future. Mol Psychiatry 5:22–31PubMedCrossRefGoogle Scholar
  60. Perry E, Walker M, Perry GJ (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22:273–280PubMedCrossRefGoogle Scholar
  61. Price BH, Adams RD, Coyle JT (2000) Neurology and psychiatry. Closing the great divide. Neurology 54:8–14PubMedCrossRefGoogle Scholar
  62. Price DD, van der Gruen A, Miller J, et al (1985) Potentiation of systemic morphine analgesia in humans by proglumide, a cholecystokinin antagonist. Anesth Analg 64:801–806PubMedCrossRefGoogle Scholar
  63. Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405:857–865PubMedCrossRefGoogle Scholar
  64. Sandson TA, O’Connor M, Sperling RA, et al (1996) Noninvasive perfusion MRI in Alzheimer’s disease: a preliminary report. Neurology 47:1339–1342PubMedCrossRefGoogle Scholar
  65. Sapolsky R, Pulsinelli W (1985) Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 229: 1397–1400PubMedCrossRefGoogle Scholar
  66. Schatzberg AF (2000) Psychopharmacology in the new millenium. In: Weissman S, Sabshin M, Eist H (eds) Psychiatry in the new millenium. American Psychiatric Press, Washington, DC, pp 179–192Google Scholar
  67. Schenk DB, Seubert P, Leiberburg I, et al (2000) Beta-peptide immunization: a possible new treatment for Alzheimer disease. Arch Neurol 57:934–936PubMedCrossRefGoogle Scholar
  68. Searle JR (2000) Consciousness. Annu Rev Neurosci 23:557–578PubMedCrossRefGoogle Scholar
  69. Seli T, Shapiro CM (1997) Neuropsychiatry-the mind embrained? J Psychosom Res 43:329–333PubMedCrossRefGoogle Scholar
  70. Sham P (1998) Statistical methods in psychiatric genetics. Stat Methods Med Res 7:279–300PubMedCrossRefGoogle Scholar
  71. Silbersweig DA, Stern E (1997) Symptom localization in neuropsychiatry: a functional neuroimaging approach. Ann NY Acad Sci 835:410–420PubMedCrossRefGoogle Scholar
  72. Sklar P, Altshuler D, Cargill M, et al (1999) DNA Microarrays for polymorphism detection and genotyping: utility in the understanding of complex neuropsychiatric diseases. CNS Spectrums 4(5):59–74Google Scholar
  73. Stoltenberg S, Burmeister M (2000) Recent progress in psychiatric genetics-some hope but no hype. Hum Mol Genet 9:927–935PubMedCrossRefGoogle Scholar
  74. Turetsky B (1995) Frontal and temporal lobe brain volumes in schizophrenia. Arch Gen Psychiatry 52:1061–1070PubMedCrossRefGoogle Scholar
  75. Van Muiswinkle AC, van den Brink JS, Folkers PM (1999) Real-time fMRI on a clinical MR scanner. Neuroimage 9(2):S212Google Scholar
  76. Velakoulis D, Lloyd JH (1998) The role of SPECT scanning in a neuropsychiatry unit. Aust N Z J Psychiatry 32:511–522PubMedCrossRefGoogle Scholar
  77. Weight DG, Bigler ED (1998) Neuroimaging in psychiatry. Psychiatr Clin N Am 21:725–759CrossRefGoogle Scholar
  78. Weilburg J (1989) Focal striatal abnormalities in a patient with obsessive-compulsive disorder. Arch Neurol 46:233–235CrossRefGoogle Scholar
  79. Weiskrantz L (1997) Consciousness lost and found. Oxford University Press, OxfordGoogle Scholar
  80. Westerink BH (1995) Brain micro dialysis and its application for the study of animal behaviour. Behav Brain Res 70:103–124PubMedCrossRefGoogle Scholar
  81. Woolf NJ (1999) Cholinergic correlates of consciousness: from mind to molecules. Trends Neurosci 22:540–541PubMedCrossRefGoogle Scholar
  82. Yu G, Nishimura M, Arawaka S, et al (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and beta-APP processing. Nature 407:48–54PubMedCrossRefGoogle Scholar
  83. Zametkin AJ (1990) Cerebral glucose metabolism in adults with hyperactivity disorder with childhood onset. N Engl J Med 323:1361–1366PubMedCrossRefGoogle Scholar
  84. Zanardi R, Benedetti F, Di Bella D, et al (2000) Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J Clin Psychopharmacol 20:105–107PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2001

Authors and Affiliations

  • Colin M. Shapiro
    • 1
  • Madeline Li
    • 1
  • Alan Ong
    • 1
  • Ajmal Razmy
    • 1
  • Tonia Seli
    • 1
  1. 1.Neuropsychiatry Programme, Department of PsychiatryUniversity of Toronto and University Health NetworkTorontoCanada

Personalised recommendations