Advertisement

N-Acetylglucosaminyltransferase-I

  • Pamela Stanley

Abstract

Structural analyses of sugars on secreted glycoproteins performed about 30 years ago revealed bi-, tri-, and tetraantennary N-glycans in which GlcNAc residues linked to a conserved trimannosyl core initiated each antenna. These same structures were lectin binding sites on red cell glycoproteins (Kornfeld and Kornfeld 1970), prompting the search for the GlcNAc-transferases that catalyzed the addition of each GlcNAc residue. N-Acetylglucosaminyltransferase-I (GnT-I) was the first N-glycan branching GlcNAc- transferase for which an assay was developed (Gottlieb et al. 1975; Stanley et al. 1975). It is a Type II transmembrane protein of ~447 amino acids (Kumar et al. 1990; Sarkar et al. 1991) that resides in the medial/trans Golgi. GnT-I catalyzes the transfer of GlcNAc from UDP-GlcNAc to the terminal α-1,3-linked Man in Man5GlcNAc2Asn to initiate the synthesis of hybrid and complex N-linked glycans in multicellular organisms (reviewed in Kornfeld and Kornfeld 1985). It is not found in yeast or bacteria. The human gene encoding GnT-I is termed MGAT1 and resides on chromosome 5q35 (Kumar et al. 1992; Tan et al. 1995), and the mouse gene, Mgat1, is on chromosome 11 (Pownall et al. 1992). Two transcripts of ~2.9kb and ~3.3 kb are observed in most mammalian tissues, with the shorter transcript predominating in liver, and the longer transcript in brain (Yang et al. 1994; Yip et al. 1997; Fukada et al. 1998). In mammals, the coding region is in a single exon and the Mgatl gene is ubiquitously expressed. Mutant mice with a targeted Mgatl gene mutation that inactivates GnT-I die at mid-gestation (Ioffe and Stanley 1994; Metzler et al. 1994). However, cultured cells (Gottlieb et al. 1975; Meager et al. 1975; Stanley et al. 1975) and plants (von Schaewen et al. 1993) lacking GnT-I are viable and healthy.

Keywords

Chinese Hamster Ovary Cell GlcNAc Residue Lectin Binding Site Chinese Hamster Ovary Cell Mutant Glycosylation Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Briles EB (1982) Lectin-resistant cell surface variants of eukaryotic cells. Int Rev Cytol 75:101–165PubMedCrossRefGoogle Scholar
  2. Campbell RM, Metzler M, Granovsky M, Dennis JW, Marth JD (1995) Complex asparagine-linked oligosaccharides in Mgat1-null embryos. Glycobiology 5:535–543PubMedCrossRefGoogle Scholar
  3. Chaney W, Stanley P (1986) Lec1A Chinese hamster ovary cell mutants appear to arise from a structural alteration in N-acetylglucosaminyltransferase I. J Biol Chem 261:10551–10557PubMedGoogle Scholar
  4. Chen W, Unligil UM, Rini JM, Stanley P (2001) Independent Lec1A CHO glycosylation mutants arise from point mutations in N-acetylglucosaminyltransferase I that reduce affinity for both substrates. Molecular consequences based on the crystal structure of GlcNAc-TI. Biochem 40:8765–8772CrossRefGoogle Scholar
  5. Chen S, Zhou S, Sarkar M, Spence AM, Schachter H (1999) Expression of three Caenorhabditis elegans N-acetylglucosaminyltransferase I genes during development. J Biol Chem 274:288–297PubMedCrossRefGoogle Scholar
  6. Chui D, Oh-Eda M, Liao YF, Panneerselvam K, Lai A, Marek KW, Freeze HH, Moremen KW, Fukuda MN, Marth JD (1997) α-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 90:157–167PubMedCrossRefGoogle Scholar
  7. Fukada T, Kioka N, Nishiu J, Sakata S, Sakai H, Yamada M, Romano T (1998) Different response to inflammation of the multiple mRNAs of rat N-acetylglucosaminyltrans-ferase I with variable 5′-untranslated sequences. FEBS Lett 436:228–232PubMedCrossRefGoogle Scholar
  8. Gottlieb C, Baenziger J, Kornfeld S (1975) Deficient uridine diphosphate-N-acetylglucosamine:glycoprotein N-acetylglucosaminyltransferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins. J Biol Chem 250:3303–3309PubMedGoogle Scholar
  9. Hoe MH, Slusarewicz P, Misteli T, Watson R, Warren G (1995) Evidence for recycling of the resident medial/trans Golgi enzyme, N-acetylglucosaminyltransferase I, in ldlD cells. J Biol Chem 270:25057–25063PubMedCrossRefGoogle Scholar
  10. Ioffe E, Stanley P (1994) Mice lacking N-acetylglucosaminyltransferase I activity die at midgestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci USA 91:728–732PubMedCrossRefGoogle Scholar
  11. Ioffe E, Liu Y, Stanley P (1996) Essential role for complex N-glycans in forming an organized layer of bronchial epithelium. Proc Natl Acad Sci USA 93:11041–11046PubMedCrossRefGoogle Scholar
  12. Ioffe E, Liu Y, Stanley P (1997) Complex N-glycans in Mgat1 null preimplantation embryos arise from maternal Mgat1 RNA. Glycobiology 7:913–919PubMedCrossRefGoogle Scholar
  13. Kornfeld R, Kornfeld S (1970) The structure of a phytohemagglutinin receptor site from human erythrocytes. J Biol Chem 245:2536–2545PubMedGoogle Scholar
  14. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664PubMedCrossRefGoogle Scholar
  15. Kumar R, Yang J, Larsen RD, Stanley P (1990) Cloning and expression of N-acetylgluco-saminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci USA 87:9948–9952PubMedCrossRefGoogle Scholar
  16. Kumar R, Yang J, Eddy RL, Byers MG, Shows TB, Stanley P (1992) Cloning and expression of the murine gene and chromosomal location of the human gene encoding N-acetylglucosaminyltransferase I. Glycobiology 2:383–393. (erratum Glycobiology (1999) 9(8):ix)PubMedCrossRefGoogle Scholar
  17. Meager A, Ungkitchanukit A, Nairn R, Hughes RC (1975) Ricin resistance in baby hamster kidney cells. Nature 257:137–139PubMedCrossRefGoogle Scholar
  18. Metzler M, Gertz A, Sarkar M, Schachter H, Schrader JW, Marth JD (1994) Complex asparagine-linked oligosaccharides are required for morphogenic events during postimplantation development. EMBO J 13:2056–2065PubMedGoogle Scholar
  19. Narasimhan S, Stanley P, Schachter H (1977) Control of glycoprotein synthesis. Lectinresistant mutant containing only one of two distinct N-acetylglucosaminyltransferase activities present in wild-type Chinese hamster ovary cells. J Biol Chem 252:3926–3933Google Scholar
  20. Nishikawa Y, Pegg W, Paulsen H, Schachter H (1988) Control of glycoprotein synthesis. Purification and characterization of rabbit liver UDP-N-acetylglucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I. J Biol Chem 263:8270–8281PubMedGoogle Scholar
  21. Opat AS, Puthalakath H, Burke J, Gleeson PA (1998) Genetic defect in N-acetylgluco-saminyltransferase I gene of a ricin-resistant baby hamster kidney mutant. Biochem J 336:593–598PubMedGoogle Scholar
  22. Oppenheimer CL, Hill RL (1981) Purification and characterization of a rabbit liver α,1,3-mannoside β1,2 N-acetylglucosaminyltransferase. J Biol Chem 256:799–804PubMedGoogle Scholar
  23. Pownall S, Kozak CA, Schappert K, Sarkar M, Hull E, Schachter H, Marth JD (1992) Molecular cloning and characterization of the mouse UDP-N-acetylgrucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I gene. Genomics 12:699–704PubMedCrossRefGoogle Scholar
  24. Puthalakath H, Burke J, Gleeson PA (1996) Glycosylation defect in Led Chinese hamster ovary mutant is due to a point mutation in N-acetylglucosaminyltransferase I gene. J Biol Chem 271:27818–27822PubMedCrossRefGoogle Scholar
  25. Robertson MA, Etchison JR, Robertson JS, Summers DF, Stanley P (1978) Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistant CHO cells. Cell 13:515–526PubMedCrossRefGoogle Scholar
  26. Sarkar M, Hull E, Nishikawa Y, Simpson RJ, Moritz RL, Dunn R, Schachter H (1991) Molecular cloning and expression of cDNA encoding the enzyme that controls conversion of high-mannose to hybrid and complex N-glycans: UDP-N-acetylglucosamine: α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I. Proc Natl Acad Sci USA 88:234–238PubMedCrossRefGoogle Scholar
  27. Sarkar M, Pagny S, Unligil U, Joziasse D, Mucha J, Glossl J, Schachter H (1998) Removal of 106 amino acids from the N-terminus of UDP-GlcNAc: α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I does not inactivate the enzyme. Glycoconj J 15:193–197PubMedCrossRefGoogle Scholar
  28. Stanley P (1983) Selection of lectin-resistant mutants of animal cells. Methods Enzymol 96:157–184PubMedCrossRefGoogle Scholar
  29. Stanley P (1984) Glycosylation mutants of animal cells. Annu Rev Genet 18:525–552PubMedCrossRefGoogle Scholar
  30. Stanley P (1989) Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity. Mol Cell Biol 9:377–383PubMedGoogle Scholar
  31. Stanley P, Narasimhan S, Siminovitch L, Schachter H (1975) Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine-glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci USA 72:3323–3327PubMedCrossRefGoogle Scholar
  32. Tabas I, Schlesinger S, Kornfeld S (1978) Processing of high mannose oligosaccharides to form complex-type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J Biol Chem 253:716–722PubMedGoogle Scholar
  33. Tan J, D’Agostaro AF, Bendiak B, Reck F, Sarkar M, Squire JA, Leong P, Schachter H (1995) The human UDP-N-acetylglucosamine: α-6-D-mannoside-β-1,2-N-acetylgluco-saminyltransferase II gene (MGAT2). Cloning of genomic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein. Eur J Biochem 231:317–328PubMedCrossRefGoogle Scholar
  34. Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM (2000) X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I, a key enzyme in the biosynthesis of N-linked glycans. EMBO J 19:5269–5280PubMedCrossRefGoogle Scholar
  35. von Schaewen A, Sturm A, O’Neill J, Chrispeels MJ (1993) Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modifled complex N-linked glycans. Plant Physiol 102:1109–1118CrossRefGoogle Scholar
  36. Wenderoth I, von Schaewen A (2000) Isolation and characterization of plant N-acetyl glu-cosaminyltransferase I (GntI) cDNA sequences. Functional analyses in the Arabidopsis cgl mutant in antisense plants. Plant Physiol 123:1097–1108Google Scholar
  37. Yang J, Bhaumik M, Liu Y, Stanley P (1994) Regulation of n-linked glycosylation. Neuronal cell-specific expression of a 5′-extended transcript from the gene encoding N-acetyl-glucosaminyltransferase I. Glycobiology 4:703–712Google Scholar
  38. Yip B, Chen SH, Mulder H, Hoppener JW, Schachter H (1997) Organization of the human β-1,2-N-acetylglucosaminyltransferase I gene (MGAT1), which controls complex and hybrid N-glycan synthesis. Biochem J 321:465–474PubMedGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Pamela Stanley
    • 1
  1. 1.Department of Cell BiologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations