Advertisement

Oligosaccharyltransferase Complex, Ribophorin-I, Ribophorin-II, OST48,and DAD1

  • Ernst Bause
  • Birgit Hardt

Abstract

Mammalian N-glycoproteins have been implicated as affecting a variety of biological processes such as cell growth, cell development, and cell communication, as well as protein stability and the control of protein folding (Varki et al. 1999). N-Glycan diversity arises from a common GlcNAc2-Man9-Glc3 precursor that is preassembled with dolichol-PP (Dol-PP), transferred en bloc to specific asparagine residues of the nascent polypeptide chain, and then remodeled by endoplasmic reticulum (ER)- and Golgi-resident α-glycosidases and glycosyltransferases (Kornfeld and Kornfeld 1985). Oligosaccharyltransferase (OST), a hetero-oligomeric protein complex associated with the ER membrane, occupies a central role in this pathway linking the Dol-PP- dependent reaction sequence of oligosaccharide precursor formation with the lipid- independent route of N-glycan processing and maturation.

Keywords

Complete Amino Acid Sequence Glycosyl Donor Glycosyl Acceptor Nascent Polypeptide Chain Hydroxyamino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apte SS, Mattei MG, Seidin MF, Olsen BR (1995) The highly conserved defender against death 1 (DAD1) gene maps to human chromosome 14q11-q12 and mouse chromosome 14 and has plant and nematode homologs. FEBS Lett 363:304–306PubMedCrossRefGoogle Scholar
  2. Aubert JP, Chiroutre M, Kerckaert JP, Helbecque N, Loucheux-Lefebvre MH (1982) Purification by affinity chromatography of the solubilized oligosaccharyltransferase from hen oviducts using a privileged secondary structure adopting peptide. Biochem Biophys Res Commun 104:1550–1559PubMedCrossRefGoogle Scholar
  3. Bause E (1979) Studies on the acceptor specifity of asparagine-N-glycosyltransferase from rat liver. FEBS Lett 103:296–299PubMedCrossRefGoogle Scholar
  4. Bause E (1983) Structural requirements of N-glycosylation of proteins: studies with proline peptides as conformational probes. Biochem J 209:331–336PubMedGoogle Scholar
  5. Bause E, Hettkamp H (1979) Primary structural requirements for N-glycosylation of peptides in rat liver. FEBS Lett 108:341–344PubMedCrossRefGoogle Scholar
  6. Bause E, Legier G (1981) The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-Thr (Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 195:639–644PubMedGoogle Scholar
  7. Bause E, Breuer W, Peters S (1995) Investigation of the active site of oligosaccharyltransferase from pig liver using synthetic tripeptides as tools. Biochem J 312:979–985PubMedGoogle Scholar
  8. Bause E, Hettkamp H, Legier G (1982) Conformational aspects of N-glycosylation of proteins: studies with linear and cyclic peptides as probes. Biochem J 203:761–768PubMedGoogle Scholar
  9. Bause E, Wesemann M, Bartoschek A, Breuer W (1997) Epoxyethylglycyl peptides as inhibitors of oligosaccharyltransferase: double-labelling of the active site. Biochem J 322:95–102PubMedGoogle Scholar
  10. Behal A, Prakash K, D’Eustachio P, Adesnik M, Sabatini DD, Kreibich G (1990) Structure and chromosomal location of the rat ribophorin I gene. J Biol Chem 265:8252–8258PubMedGoogle Scholar
  11. Breuer W, Bause E (1995) Oligosaccharyl transferase is a constitutive component of an oligomeric protein complex from pig liver endoplasmatic reticulum. Eur J Biochem 228:689–696PubMedCrossRefGoogle Scholar
  12. Chalifour RJ, Spiro RG (1988) Effect of phospholipids on thyroid oligosaccharyltransferase activity and orientation: evaluation of structural determinants for stimulation of N-glycosylation. J Biol Chem 263:15673–15680PubMedGoogle Scholar
  13. Fu J, Kreibich G (2000) Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum. J Biol Chem 275:3984–3990PubMedCrossRefGoogle Scholar
  14. Fu J, Ren M, Kreibich G (1997) Interactions among the subunits of the oligosaccharyltransferase complex. J Biol Chem 272:29687–29692PubMedCrossRefGoogle Scholar
  15. Gavel Y, von Heijne G (1990) Sequence differences between glycosylated and nonglycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng 3:433–442PubMedCrossRefGoogle Scholar
  16. Hart GW, Brew K, Grant GA, Bradshaw RA, Lennarz WJ (1979) Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins: studies with natural and synthetic peptides. J Biol Chem 254:9747–9753PubMedGoogle Scholar
  17. Hendrickson T, Imperiali B (1995) Metal ion dependance of oligosaccharyl transferase: implications for catalysis. Biochem 34:9444–9450CrossRefGoogle Scholar
  18. Hendrickson T, Spencer JR, Kato M, Imperiali B (1996) Design and evaluation of potent inhibitors of asparagine-linked protein glycosylation. J Am Chem Soc 118:7636–7637CrossRefGoogle Scholar
  19. Hortin G, Stern AM, Miller B, Abeles RH, Boime I (1983) DL-threo-β-Fluoroasparagine inhibits asparagine-linked glycosylation in cell-free lysates. J Biol Chem 258:4047–4050PubMedGoogle Scholar
  20. Imperiali B (1997) Protein glycosylation: the clash of the titans. Acc Chem Res 30:452–459CrossRefGoogle Scholar
  21. Imperiali B, Zimmerman JW (1990) Synthesis of dolichylpyrophospate-linked oligosac-charides. Tetrahedron Lett 31:6485–6488CrossRefGoogle Scholar
  22. Imperiali B, Shannon KL, Unno M, Rickett KW (1992) A mechanistic proposal for asparagine-linked glycosylation. J Am Chem Soc 114:7944–7945CrossRefGoogle Scholar
  23. Imperiali B, Spencer JR, Struthers MD (1994) Structural and functional characterization of a constrained Asx-turn motif. J Am Chem Soc 116:8424–8425CrossRefGoogle Scholar
  24. Kelleher DJ, Gilmore R (1997) DAD1, the defender against apoptotic cell death, is a subunit of the mammalian oligosaccharyltransferase. Proc Natl Acad Sci USA 94:4994–4999PubMedCrossRefGoogle Scholar
  25. Kelleher DJ, Gilmore R (1994) The Saccharomyces cerevisiae oligosaccharyltransferase is a protein complex composed of Wbp1p, Swp1p, and four additional polypeptides. J Biol Chem 269:12908–12917PubMedGoogle Scholar
  26. Kelleher DJ, Kreibich G, Gilmore R (1992) Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorin I and II and a 48 kd protein. Cell 69:55–65PubMedCrossRefGoogle Scholar
  27. Knauer R, Lehle L (1994) The N-oligosaccharyltransferase complex from yeast. FEBS Lett 344:83–86PubMedCrossRefGoogle Scholar
  28. Knauer R, Lehle L (1999) The oligosaccharyltransferase complex from yeast. Biochim Biophys Acta 1426:259–273PubMedCrossRefGoogle Scholar
  29. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664PubMedCrossRefGoogle Scholar
  30. Kumar V, Heinemann FS, Ozols J (1994a) Microassay for oligosaccharyltransferase: separation of reaction components by partitioning in detergent solution followed by ultrafiltration. Anal Biochem 219:305–308PubMedCrossRefGoogle Scholar
  31. Kumar V, Heinemann FS, Ozols J (1994b) Purification and characterization of avian oligosaccharyltransferase: complete amino acid sequence of the 50-kDa subunit. J Biol Chem 269:13451–13457PubMedGoogle Scholar
  32. Kumar V, Heinemann FS, Ozols J (1995a) Purification and characterization of hepatic oligosaccharyltransferase. Biochem Mol Biol Int 36:817–826PubMedGoogle Scholar
  33. Kumar V, Korza G, Heinemann FS, Ozols J (1995b) Human oligosaccharyltransferase: isolation, characterization, and the complete amino acid sequence of 50-kDa subunit. Arch Biochem Biophys 320:217–223PubMedCrossRefGoogle Scholar
  34. Lehle L, Bause E (1984) Primary structural requirements for N-and O-glycosylation of yeast mannoproteins. Biochim Biophys Acta 799:246–251CrossRefGoogle Scholar
  35. Lehle L, Tanner W (1978) Glycosyl transfer from dolichyl phosphate sugars to endogenous and exogenous glycoprotein acceptors in yeast. Eur J Biochem 83:563–570PubMedCrossRefGoogle Scholar
  36. Loffler C, Rao VV, Hansmann I (1991) Mapping of the ribophorin II (RPNII) gene to human chromosome 20q12-q13.1 by in-situ hybridization. Hum Genet 87:221–222PubMedCrossRefGoogle Scholar
  37. Marshall RD (1972) Glycoproteins. Annu Rev Biochem 41:673–702PubMedCrossRefGoogle Scholar
  38. Nilsson I, von Heijne G (1993) Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem 268:5798–5801PubMedGoogle Scholar
  39. Nishii K, Tsuzuki T, Kumai M, Takeda N, Koga H, Aizawa S, Nishimoto T, Shibata Y (1999) Abnormalities of developmental cell death in DAD 1-deficient mice. Genes Cells 4:243–252PubMedCrossRefGoogle Scholar
  40. Pathak R, Hendrickson TL, Imperiali B (1995) Sulhydryl modification of the yeast Wbplp inhibits oligosaccharyl transferase activity. Biochemistry 34:4179–4185PubMedCrossRefGoogle Scholar
  41. Pirozzi G, Zhou ZM, D’Eustachio P, Sabatini DD, Kreibich G (1991) Rat ribophorin II: molecular cloning and chromosomal localization of a highly conserved transmembrane glycoprotein of the rough endoplasmic reticulum. Biochem Biophys Res Commun 176:1482–1486PubMedCrossRefGoogle Scholar
  42. Rathod PK, Tashjian AH, Abeles RH (1986) Incorporation of β-fluoroasparagine into peptides prevents N-linked glycosylation: in vitro studies with synthetic fluoropeptides. J Biol Chem 261:6461–6469PubMedGoogle Scholar
  43. Ronin C, Bouchilloux S, Granier C, van Rietschoten J (1978) Enzymatic N-glycosylation of synthetic Asn-X-Thr containing peptides. FEBS Lett 96:179–182PubMedCrossRefGoogle Scholar
  44. Sanjay A, Fu J, Kreibich G (1998) DAD1 is required for the function and structural integrity of the oligosaccharyltransferase complex. J Biol Chem 273:26094–26099PubMedCrossRefGoogle Scholar
  45. Silberstein S, Gilmore R (1996) Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase. FASEB J 10:849–858PubMedGoogle Scholar
  46. Tillmann U, Günther R, Schweden J, Bause E (1987) Subcellular location of enzymes involved in the N-glycosylation and processing of asparagine-linked oligosaccharides in Saccharomyces cerevisiae. Eur J Biochem 162:635–642PubMedCrossRefGoogle Scholar
  47. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (1999) Essential of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  48. Waechter CJ, Lennarz WJ (1976) The role of polyprenol-linked sugars in glycoproteins. Annu Rev Biochem 45:95–112PubMedCrossRefGoogle Scholar
  49. Wang L, Dobberstein B (1999) Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett 457:316–322PubMedCrossRefGoogle Scholar
  50. Welply J, Shenbagamurthi P, Lennarz WJ, Naider F (1983) Substrate recognition by oligosaccharyltransferase: studies on glycosylation of modified Asn-X-Thr/Ser tripeptides. J Biol Chem 258:11856–11863PubMedGoogle Scholar
  51. Xu T, Coward K (1997) 13C-and 15 N-labeled peptide substrates as mechanistic probes of oligosaccharyltransferase. Biochemistry 36:14683–14689PubMedCrossRefGoogle Scholar
  52. Yamagata T, Tsuru T, Momoi MY, Suwa K, Nozaki Y, Mukasa T, Ohashi H, Fukushima Y, Momoi T (1997) Genome organization of human 48-kDa oligosaccharyltransferase. Genomics 45:535–540PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Ernst Bause
    • 1
  • Birgit Hardt
    • 1
  1. 1.Institut für Physiologische ChemieUniversität BonnBonnGermany

Personalised recommendations