α4-N-Acetylhexosaminyltransferase (EXTL2)

  • Hiroshi Kitagawa
  • Kazuyuki Sugahara


α1,4-N-Acetylhexosaminyltransferase (EXTL2) transfers GalNAc/GlcNAc from UDP- GalNAc/GlcNAc to the tetrasaccharide representing the common glycosaminoglycan (GAG)-protein linkage region (GlcAβ1-3Galβ1-3Galβ1-4Xyl), which is most likely the critical enzyme that determines and initiates heparin/heparan sulfate (HS) synthesis, distinguishing it from the chondroitin sulfate (CS)/dermatan sulfate (DS) synthesis (Kitagawa et al. 1999b). The enzyme is composed of 330 amino acids with one N- glycan and has a type II transmembrane protein topology characteristic of many other glycosyltransferases (Wuyts et al. 1997; Kitagawa et al. 1999b). The enzyme is encoded by the multiple exostoses-like gene EXTL2, a member of the hereditary multiple exos- toses (EXT) gene family of tumor suppressors (Kitagawa et al. 1999b). The enzyme protein is approximately half the size of the other EXT family members that have 676-919 amino acids. The protein shows significant homology with the carboxy- terminus of the other members of the family (Wuyts et al. 1997).


Chondroitin Sulfate Linkage Region Dermatan Sulfate Acceptor Substrate Mouse Mastocytoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Esko JD, Zhang L (1996) Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol 6:663–670PubMedCrossRefGoogle Scholar
  2. Fransson LÅ (1987) Structure and function of cell-associated proteoglycans. Trends Biochem Sci 12:406–411CrossRefGoogle Scholar
  3. Fritz TA, Agrawal PK, Esko JD, Krishna NR (1997) Partial purification and substrate specificity of heparan sulfate α-N-acetylglucosaminyltransferase. I. Synthesis, NMR spectroscopic characterization and in vitro assays of two aryl tetrasaccharides. Glycobiology 7:587–595PubMedCrossRefGoogle Scholar
  4. Fritz TA, Gabb MM, Wei G, Esko JD (1994) Two N-acetylglucosaminyltransferases catalyze the biosynthesis of heparan sulfate. J Biol Chem 269:28809–28814PubMedGoogle Scholar
  5. Kim BT, Kitagawa H, Tamura J, Saito T, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4-N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis. Proc Natl Acad Sci USA 98:7176–7181PubMedCrossRefGoogle Scholar
  6. Kitagawa H, Kano Y, Shimakawa H, Goto F, Ogawa T, Okabe H, Sugahara K (1999a) Identification and characterization of a novel UDP-GalNAc:GlcAβ-R α1,4-N-acetylgalactosaminyltransferase from a human sarcoma cell line. Glycobiology 9:697–703PubMedCrossRefGoogle Scholar
  7. Kitagawa H, Shimakawa H, Sugahara K (1999b) The tumor suppressor EXT-like gene EXTL2 encodes an α1,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region: the key enzyme for the chain initiation of heparan sulfate. J Biol Chem 274:13933–13937PubMedCrossRefGoogle Scholar
  8. Kitagawa H, Tanaka Y, Tsuchida K, Goto F, Ogawa T, Lidholt K, Lindahl U, Sugahara K (1995) N-Acetylgalactosamine (GalNAc) transfer to the common carbohydrate-protein linkage region of sulfated glycosaminoglycans: identification of UDP-GalNAachondro-oligosaccharide α-N-acetylgalactosaminyltransferase in fetal bovine serum. J Biol Chem 270:22190–22195PubMedCrossRefGoogle Scholar
  9. Kitagawa H, Tsutsumi K, Ujikawa M, Goto F, Tamura J, Neumann KW, Ogawa T, Sugahara K (1997a) Regulation of chondroitin sulfate biosynthesis by specific sulfation: acceptor specificity of serum β-GalNAc transferase revealed by structurally-defined oligosaccharides. Glycobiology 7:531–537PubMedCrossRefGoogle Scholar
  10. Kitagawa H, Ujikawa M, Tsutsumi K, Tamura J, Neumann KW, Ogawa T, Sugahara K (1997b) Characterization of serum β-glucuronyltransferase involved in chondroitin sulfate biosynthesis. Glycobiology 7:905–911PubMedCrossRefGoogle Scholar
  11. Lidholt K, Fjelstad M, Lindahl U, Goto F, Ogawa T, Kitagawa H, Sugahara K (1997) Assessment of glycosaminoglycan-protein linkage tetrasaccharides as acceptors for GalNAc-and GlcNAc-transferases from mouse mastocytoma. Glycoconj J 14:737–742PubMedCrossRefGoogle Scholar
  12. Lind T, Tufaro F, McCormick C, Lindahl U, Lidholt K (1998) The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 273:26265–26268PubMedCrossRefGoogle Scholar
  13. Manzi A, Salimath PV, Spiro RC, Keifer PA, Freeze HH (1995) Identification of a novel glycosaminoglycan core-like molecule I: 500 MHz 1H NMR analysis using a nano-NMR probe indicates the presence of a terminal α-GalNAc residue capping 4-methylumbelliferyl-β-D-xyloside. J Biol Chem 270:9154–9163PubMedCrossRefGoogle Scholar
  14. Miura Y, Freeze HH (1998) α-N-Acetylgalactosamine-capping of chondroitin sulfate core region oligosaccharides primed on xylosides. Glycobiology 8:813–819PubMedCrossRefGoogle Scholar
  15. Miura Y, Ding Y, Manzi A, Hindsgaul O, Freeze HH (1999) Characterization of mammalian UDP-GalNAc:glucuronide α1-4-N-acetylgalactosaminyltransferase. Glycobiology 9:1053–1060PubMedCrossRefGoogle Scholar
  16. Murch SH, Winyard PJD, Koletzko S, Wehner B, Cheema HA, Risdon RA, Philips AD, Meadows N, Klein NJ, Walker-Smith JA (1996) Congenital enterocyte heparan sulphate deficiency with massive albumin loss, secretory diarrhoea, and malnutrition. Lancet 347:1299–1301PubMedCrossRefGoogle Scholar
  17. Nadanaka S, Kitagawa H, Sugahara K (1998) Demonstration of the immature glycosaminoglycan tetrasaccharide sequence GlcAβ1-3Galβ1-3Galβ1-4Xyl on recombinant soluble human α-thrombomodulin: an oligosaccharide structure on a “part-time” proteoglycan. J Biol Chem 273:33728–33734PubMedCrossRefGoogle Scholar
  18. Salimath PV, Spiro RC, Freeze HH (1995) Identification of a novel glycosaminoglycan core-like molecule II: α-GalNAc-capped xylosides can be made by many cell types. J Biol Chem 270:9164–9168PubMedCrossRefGoogle Scholar
  19. Wuyts W, Van Hul W, Hendrickx J, Speleman F, Wauters J, De Boulle K, Van Roy N, Van Agtmael T, Bossuyt P, Willems PJ (1997) Identification and characterization of a novel member of the EXT gene family, EXTL2. Eur J Hum Genet 5:382–389PubMedGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Hiroshi Kitagawa
    • 1
  • Kazuyuki Sugahara
    • 1
  1. 1.Department of BiochemistryKobe Pharmaceutical UniversityKobeJapan

Personalised recommendations