GAG Glucuronyltransferase-I

  • Hiroshi Kitagawa
  • Kazuyuki Sugahara


GAG glucuronyltransferase I (GlctAT-I) transfers GlcA from UDP-GlcA to the trisaccharide-serine Galβ1-3Galβ1-4Xylβ1-O-Ser, forming the GAG-protein linkage region (GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser) common to various proteoglycans. The enzyme consists of 335 amino acids with one N-glycan and has a type II trans- membrane orientation characteristic of many of the other glycosyltransferases (Kitagawa et al. 1998; Wei et al. 1999). The molecular mass of the peptide backbone is 37 kDa, but the mass of the mature protein increases with glycosylation to around 47 kDa. An additional characteristic feature in the amino acid sequence of GlcN-I is a proline-rich domain (from Pro-30 to Pro-75) next to the transmembrane region, as is seen in several other glycosyltransferases, including glucuronyltransferase-P (GlcN-P) and glucuronyltransferase-D (GlcN-D), which synthesize the precursor structure GlcAβ1-3Galβ1-4GlcNAc-R for the HNK-1 carbohydrate epitope GlcA(3-O- sulfate)β1-3Galβ1-4GlcNAc-R (Terayama et al. 1997; Seiki et al. 1999; Shimoda et al. 1999). Database searches indicate that the amino acid sequence of GlcN-I displays 43% and 46% identity to GlcN-P and GlcN-D, respectively. The highest sequence identity is found in the COOH-terminal catalytic domain, which follows the prolinerich region (252 amino acids between Pro-68 and Glu-319 overlap with about 60% identity) (Kitagawa et al. 1998; Wei et al. 1999) and contains the four previously identified highly conserved motifs (I-IV) for putative GlcAT among animal species (Terayama et al. 1997; Shimoda et al. 1999).


Chondroitin Sulfate Acceptor Substrate Repeat Disaccharide Unit Chinese Hamster Ovary Cell Mutant Embryonic Chick Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida R, Levery SB, Mandel U, Kresse H, Schwientek T, Bennett EP, Clausen H (1999) Cloning and expression of a proteoglycan UDP-galactose:β-xylose β1,4-galactosyl-transferase I: a seventh member of the human β4-galactosyltransferase gene family. J Biol Chem 274:26165–26171PubMedCrossRefGoogle Scholar
  2. Bai X, Wei G, Sinha A, Esko JD (1999) Chinese hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I. J Biol Chem 274:13017–13024PubMedCrossRefGoogle Scholar
  3. Bakker H, Friedmann I, Oka S, Kawasaki T, Nifant’ev N, Schachner M, Mantei N (1997) Expression cloning of a cDNA encoding a sulfotransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. J Biol Chem 272:29942–29946PubMedCrossRefGoogle Scholar
  4. Brandt AE, Distler J, Jourdian GW (1969) Biosynthesis of chondroitin sulfate-protein linkage region: purification and properties of a glucuronosyltransferase from embryonic chick brain. Proc Natl Acad Sci USA 64:374–380PubMedCrossRefGoogle Scholar
  5. Bulik DA, Wei G, Toyoda H, Kinoshita-Toyoda A, Waldrip WR, Esko JD, Robbins PW, Selleck SB (2000) sqv-3,-7 and-8, a set of genes affecting morphogenesis in Caenorhabditis elegans, encode enzymes required for glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 97:10838–10843PubMedCrossRefGoogle Scholar
  6. Curenton T, Ekborg G, Rodén L (1991) Glucuronosyl transfer to galactose residues in the biosynthesis of HNK-1 antigens and xylose-containing glycosaminoglycans: one or two transferases? Biochem Biophys Res Commun 179:416–422PubMedCrossRefGoogle Scholar
  7. Helting T (1972) Biosynthesis of heparin: solubilization and partial purification of uridine diphosphate glucuronic acid; acceptor glucuronosyltransferase from mouse mastocytoma. J Biol Chem 247:4327–4332PubMedGoogle Scholar
  8. Helting T, Rodén L (1969) Biosynthesis of chondroitin sulfate. IL Glucuronosyl transfer in the formation of the carbohydrate-protein linkage region. J Biol Chem 244:2799–2805PubMedGoogle Scholar
  9. Herman TH, Horvitz HR (1999) Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway. Proc Natl Acad Sci USA 96:974–979PubMedCrossRefGoogle Scholar
  10. Herman TH, Hartwieg E, Horvitz HR (1999) sav Mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proc Natl Acad Sci USA 96:968–973PubMedCrossRefGoogle Scholar
  11. Kitagawa H, Tone Y, Tamura J, Neumann KW, Ogawa T, Oka S, Kawasaki T, Sugahara K (1998) Molecular cloning and expression of glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem 273:6615–6618PubMedCrossRefGoogle Scholar
  12. Kitagawa H, Ujikawa M, Tsutsumi K, Tamura J, Neumann KW, Ogawa T, Sugahara K (1997) Characterization of serum β-glucuronyltransferase involved in chondroitin sulfate biosynthesis. Glycobiology 7:905–911PubMedCrossRefGoogle Scholar
  13. Kitagawa H, Taoka M, Tone Y, Sugahara K (2001) Human glycosaminoglycan glucuronyl-transferase I gene and a related processed pseudogene: genomic structure, chromosomal mapping and characterization. Biochem J 358:539–546PubMedCrossRefGoogle Scholar
  14. Ong E, Yeh J-C, Ding Y, Hindsgaul O, Fukuda M (1998) Expression cloning of a human sulfotransferase that directs the synthesis of the HNK-1 glycan on the neural cell adhesion molecule and glycolipids. J Biol Chem 273:5190–5195PubMedCrossRefGoogle Scholar
  15. Pedersen LC, Tsuchida K, Kitagawa H, Sugahara K, Darden TA, Negishi M (2000) Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J Biol Chem 275:34580–34585PubMedCrossRefGoogle Scholar
  16. Schwarting GA, Jungalwala FB, Chou DK, Boyer AM, Yamamoto M (1987) Sulfated glucuronic acid-containing glycoconjugates are temporally and spatially regulated antigens in the developing mammalian nervous system. Dev Biol 120:65–76PubMedCrossRefGoogle Scholar
  17. Seiki T, Oka S, Terayama K, Imiya K, Kawasaki T (1999) Molecular cloning and expression of a second glucuronyltransferase involved in the biosynthesis of the HNK-1 carbohydate epitope. Biochem Biophys Res Commun 255:182–187PubMedCrossRefGoogle Scholar
  18. Shimoda Y, Tajima Y, Nagase T, Harii K, Osumi N, Sanai Y (1999) Cloning and expression of a novel galactoside β1,3-glucuronyltransferase involved in the biosynthesis of HNK-1 epitope. J Biol Chem 274:17115–17122PubMedCrossRefGoogle Scholar
  19. Terayama K, Oka S, Seiki T, Miki Y, Nakamura A, Kozutsumi Y, Takio K, Kawasaki T (1997) Proc Natl Acad Sci USA 94:6093–6098PubMedCrossRefGoogle Scholar
  20. Tone Y, Kitagawa H, Imiya K, Oka S, Kawasaki T, Sugahara K (1999) Characterization of recombinant human glucuronyltransferase I involved in the biosynthesis of the glycosaminoglycan-protein linkage region of proteoglycans. FEBS Lett 459:415–420PubMedCrossRefGoogle Scholar
  21. Tsuji S (1996) Molecular cloning and functional analysis of sialyltransferases. J Biochem 120:1–13PubMedCrossRefGoogle Scholar
  22. Wei G, Bai X, Sarkar AK, Esko JD (1999) Formation of HNK-1 determinants and the glycosaminoglycan tetrasaccharide linkage region by UDP-GlcUA:galactose β1,3-glucuronosyltransferases. J Biol Chem 274:7857–7864PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Hiroshi Kitagawa
    • 1
  • Kazuyuki Sugahara
    • 1
  1. 1.Department of BiochemistryKobe Pharmaceutical UniversityKobeJapan

Personalised recommendations