Advertisement

β4-N-Acetylgalactosaminyltransferase

  • Koichi Furukawa

Abstract

β4-N-Acetylgalactosaminyltransferase (β4GalNAcT) is a key enzyme to catalyze the conversion of GM3, GD3, and lactosylceramide (LacCer) to GM2, GD2, and asialo- GM2 (GA2), respectively (Yamashiro et al. 1995). This step is critical for the synthesis of all complex gangliosides such as GM1, GD1a, GD1b, GT1b, and GQ1b which are enriched in the nervous system of vertebrates. Therefore, all complex gangliosides are synthesized via the direct products of this enzyme. The cDNAs of β4GalNAcT were isolated by a eularyocyte expression cloning system for the first time as a glycosyl- transferase gene responsible for the ganglioside synthesis in 1992 (Nagata et al. 1992). This enzyme utilizes only glycolipid acceptors, not glycoproteins, and no other enzymes (genes) catalyzing similar functions have been detected to date.

Keywords

Ascites Hepatoma Complex Ganglioside Ganglioside Expression Alternative Exon Usage Ganglioside Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daniotti JL, Rosales Fritz VM, Martina JA, Furukawa K, Maccioni HJ (1997) Expression of beta 1-4 N-acetylgalactosaminyltransferase gene in the developing rat brain and retina: mRNA, protein immunoreactivity and enzyme activity. Neurochem Int 31:11–19PubMedCrossRefGoogle Scholar
  2. Fukumoto S, Yamamoto A, Hasegawa T, Abe K, Takamiya K, Okada M, Zhao J, Furukawa K, Miyazaki H, Tsuji Y, Goto G, Suzuki M, Shiku H, Furukawa K (1997) Genetic remodeling of gangliosides resulted in enhanced reactions to the foreign substances in skin. Glycobiology 7:1111–1120PubMedCrossRefGoogle Scholar
  3. Furukawa K, Akagi T, Nagata Y, Yamada Y, Shimotohno K, Cheung NK, Shiku H, Furukawa K (1993) GD2 ganglioside on human T-lymphotropic virus type I-infected T cells: possible activation of betα-1,4-N-acetylgalactosaminyltransferase gene by p40tax. Proc Natl Acad Sci USA 90:1972–1976PubMedCrossRefGoogle Scholar
  4. Furukawa K, Soejima H, Niikawa N, Shiku H (1996) Genomic organization and chromosomal assignment of the human betal,4-N-acetylgalactosaminyltransferase gene. Identification of multiple transcription units. J Biol Chem 271:20836–20844PubMedCrossRefGoogle Scholar
  5. Haraguchi M, Yamashiro S, Furukawa K, Takamiya K, Shiku H, Furukawa K (1995) The effects of the site-directed removal of N-glycosylation sites from betα-1,4-N-acetylgalactosaminyltransferase on its function. Biochem J 312:273–280PubMedGoogle Scholar
  6. Hashimoto Y, Sekine M, Iwasaki K, Suzuki A (1993) Purification and characterization of UDP-N-acetylgalactosamine GM3/GD3 N-acetylgalactosaminyltransferase from mouse liver. J Biol Chem 268:25857–25864PubMedGoogle Scholar
  7. Hidari JK, Ichikawa S, Furukawa K, Yamasaki M, Hirabayashi Y (1994) Beta 1-4N-acetylgalactosaminyltransferase can synthesize both asialoglycosphingolipid GM2 and glycosphingolipid GM2 in vitro and in vivo: isolation and characterization of a beta-1-4N-acetylgalactosaminyltransferase cDNA clone from rat ascites hepatoma cell line AH7974F. Biochem J 303:957–965PubMedGoogle Scholar
  8. Hyuga S, Yamagata S, Takatsu Y, Hyuga M, Nakanishi H, Furukawa K, Yamagata T (1999) Suppression by ganglioside GD1 a of migration capability, adhesion to vitronectin and metastatic potential of highly metastatic FBJ-LL cells. Int J Cancer 83:685–691PubMedCrossRefGoogle Scholar
  9. Jaskiewicz E, Zhu G, Bassi R, Darling DS, Young WW Jr (1996) Betal,4-N-acetylgalactosaminyltransferase (GM2 synthase) is released from Golgi membranes as a neuraminidase-sensitive, disulfide-bonded dimer by a cathepsin D-like protease. J Biol Chem 271:26395–26403PubMedCrossRefGoogle Scholar
  10. Nagata Y, Yamashiro S, Yodoi J, Lloyd KO, Shiku H, Furukawa K (1992) Expression cloning of beta 1,4 N-acetylgalactosaminyltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides. J Biol Chem 267:12082–12089PubMedGoogle Scholar
  11. Ruan S, Raj BK, Furukawa K, Lloyd KO (1995) Analysis of melanoma cells stably transfected with beta 1,4GalNAc transferase (GM2/GD2 synthase) cDNA: relative glycosyl-transferase levels play a dominant role in determining ganglioside expression. Arch Biochem Biophys 323:11–18PubMedCrossRefGoogle Scholar
  12. Takamiya K, Yamamoto A, Yamashiro S, Furukawa K, Haraguchi M, Okada M, Ikeda T, Shiku H, Furukawa K (1995) T cell receptor-mediated stimulation of mouse thymocytes induces up-regulation of the GM2/GD2 synthase gene. FEBS Lett 358:79–83PubMedCrossRefGoogle Scholar
  13. Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, Fukumoto S, Haraguchi M, Takeda N, Fujimura K, Sakae M, Kishikawa M, Shiku H, Furukawa K, Aizawa S (1996) Mice with disrupted GM2/GD2 synthase gene lack complex ganglio-sides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667PubMedCrossRefGoogle Scholar
  14. Takamiya K, Yamamoto A, Furukawa K, Zhao J, Fukumoto S, Yamashiro S, Okada M, Haraguchi M, Shin M, Kishikawa M, Shiku H, Aizawa S, Furukawa K (1998) Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone. Proc Natl Acad Sci USA 95:12147–12152PubMedCrossRefGoogle Scholar
  15. Tsurifune T, Ito T, Li X-J, Yamashiro S, Okada M, Kanematsu T, Shiku H, Furukawa K (2000) Alteration of tumor phenotypes of B16 melanoma after genetic remodeling of the ganglioside profile. Int J Oncol 17:159–165PubMedGoogle Scholar
  16. Yamamoto A, Yamashiro S, Takamiya K, Atsuta M, Shiku H, Furukawa K (1995) Diverse expression of beta 1,4-N-acetylgalactosaminyltransferase gene in the adult mouse brain. J Neurochem 65:2417–2424PubMedCrossRefGoogle Scholar
  17. Yamamoto A, Haraguchi M, Yamashiro S, Fukumoto S, Furukawa K, Takamiya K, Atsuta M, Shiku H, Furukawa K (1996) Heterogeneity in the expression pattern of two ganglioside synthase genes during mouse brain development. J Neurochem 66:26–34PubMedCrossRefGoogle Scholar
  18. Yamashiro S, Ruan S, Furukawa K, Tai T, Lloyd KO, Shiku H, Furukawa K (1993) Genetic and enzymatic basis for the differential expression of GM2 and GD2 gangliosides in human cancer cell lines. Cancer Res 53:5395–5400PubMedGoogle Scholar
  19. Yamashiro S, Haraguchi M, Furukawa K, Takamiya K, Yamamoto A, Nagata Y, Lloyd KO, Shiku H, Furukawa K (1995) Substrate specificity of beta 1,4-N-acetylgalactosaminyl-transferase in vitro and in cDNA-transfected cells. GM2/GD2 synthase efficiently generates asialo-GM2 in certain cells. J Biol Chem 270:6149–6155PubMedCrossRefGoogle Scholar
  20. Yoshimura A, Takamiya K, Kato I, Nakayama E, Shiku H, Furukawa K (1994) GD2 ganglioside-specific monoclonal antibody reacts with murine cytotoxic T lymphocytes reactive with FBL-3N erythroleukaemia. Scand J Immunol 40:557–563PubMedCrossRefGoogle Scholar
  21. Yuyama Y, Dohi T, Morita H, Furukawa K, Oshima M (1995) Enhanced expression of GM2/GD2 synthase mRNA in human gastrointestinal cancer. Cancer 75:1273–1280PubMedCrossRefGoogle Scholar
  22. Zhao J, Furukawa K, Fukumoto S, Okada M, Furugen R, Miyazaki H, Takamiya K, Aizawa S, Shiku H, Matsuyama T, Furukawa K (1999) Attenuation of interleukin 2 signal in the spleen cells of complex ganglioside-lacking mice. J Biol Chem 274:13744–13747PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Koichi Furukawa
    • 1
  1. 1.Department of Biochemistry IINagoya University School of MedicineNagoyaJapan

Personalised recommendations