Core 2 β6-N- Acetylglucosaminyltransferase-I and -III

  • Minoru Fukuda
  • Tilo Schwientek
  • Henrik Clausen


Core 2 β6-N-acetylglucosaminyltransferase (Core2GlcNAcT) is a glycosyltransferase that transfers GlcNAc from UDP-GlcNAc to αGalNAc residues in core 1, Galβ1- 3GalNAcα1-Ser/Thr with β1,6-linkage, forming Galβ1-3(GlcNAcβ1-6)GalNAcα1- Ser/Thr. The formation of the core 2 branch is usually followed by galactosylation by β4-galactosyltransferase-IV, a member of the β4-galactosyltransferase gene family (Ujita et al. 1998), resulting in the formation of N-acetyllactosamines in O-glycans. Such N-acetyllactosamines can be modified to form functional oligosaccharides such as sialyl Lewis X (Fig. 1).
Fig. 1

The proposed biosynthetic pathways of O-glycans (A) and poly-N-acetyllactosaminyl O-glycans (B). A It has been shown that the tetrasaccharide (bottom left) is formed by the sequential action of α2-3-sialyltransferase followed by α2-6-sialyltransferase. When β6 Nacetylglucosaminyltransferase, Core2GlcNAcT, is present, the branched hexasaccharide (bottom right) is formed. B Poly-N-acetyllactosaminyl chain can be extended from the GlcNAcβ1,6- linkage synthesized in core 2. Poly-N-acetyllactosaminyl extension can be further modified by α3 fucosyltransferase, forming sialyl Lex termini. (From Maemura and Fukuda 1992)


Oligo Saccharide High Endothelial Venule Acute Myelogenous Leukemia Cell Selectin Ligand Human Thymic Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baum LG, Pang M, Perillo NL, Wu T, Delegeane A, Uittenbogaart CH, Fukuda M, Seilhamer JJ (1995) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181:877–887PubMedCrossRefGoogle Scholar
  2. Bierhuizen MF, Fukuda M (1992) Expression cloning of a cDNA encoding UDP-GlcNAcGal β1-3-GalNAc-R (GlcNAc to GalNAc) β1-6GlcNAc transferase by gene transfer into CHO cells expressing polyoma large tumor antigen. Proc Natl Acad Sci USA 89:9326–9330PubMedCrossRefGoogle Scholar
  3. Bierhuizen MF, Mattei MG, Fukuda M (1993) Expression of the developmental I antigen by a cloned human cDNA encoding a member of a β1,6-N-acetylglucosaminyltransferase gene family. Gene Dev 7:468–478PubMedCrossRefGoogle Scholar
  4. Bierhuizen MFA, Maemura K, Kudo S, Fukuda M (1995) Genomic organization of core 2 and I-branching β-1,6-N-acetylglucosaminyltransferases. Implication for evolution of the β-1,6-N-acetylglucosaminyltransferase gene family. Glycobiology 5:417–425Google Scholar
  5. Brockhausen I, Kuhns W, Schachter H, Matta KL, Sutherland DR, Baker MA (1991) Biosynthesis of O-glycans in leukocytes from normal donors and from patients with leukemia: increase in O-glycan core 2 UDP-GlcNAc:Gal β3 GalNAc α-R (GlcNAc to GalNAc) β1,6-N-acetylglucosaminyltransferase in leukemic cells. Cancer Res 51:1257–1263PubMedGoogle Scholar
  6. Ellies LG, Tsuboi S, Petryniak B, Lowe JB, Fukuda M, Marth JD (1998) Core 2 oligosac-charide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9:881–890PubMedCrossRefGoogle Scholar
  7. Fukuda M, Carlsson SR, Klock JC, Dell A (1986) Structures of O-linked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. J Biol Chem 261:12796–12806PubMedGoogle Scholar
  8. Granovsky M, Fode C, Warren CE, Campbell RM, Marth JD, Pierce M, Fregien N, Dennis JW (1995) GlcNAc-transferase V and core 2 GlcNAc-transferase expression in the developing mouse embryo. Glycobiology 5:797–806PubMedCrossRefGoogle Scholar
  9. Hemmerich S, Leffler H, Rosen SD (1995) Structure of the O-glycans in GlyCAM-1, an endotheliα1-derived ligand for L-selectin. J Biol Chem 270:12035–12047PubMedCrossRefGoogle Scholar
  10. Higgins EA, Siminovitch KA, Zhuang DL, Brockhausen I, Dennis JW (1991) Aberrant O-linked oligosaccharide biosynthesis in lymphocytes and platelets from patients with the Wiskott-Aldrich syndrome. J Biol Chem 266:6280–6290PubMedGoogle Scholar
  11. Hiraoka N, Petryniak B, Nakayama J, Tsuboi S, Suzuki M, Yeh JC, Izawa D, Tanaka T, Miyasaka M, Lowe JB, Fukuda M (1999) A novel, high endothelial venule-specific sul-fotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity 11:79–89PubMedCrossRefGoogle Scholar
  12. Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369PubMedCrossRefGoogle Scholar
  13. Koya D, Dennis JW, Warren CE, Takahara N, Schoen FJ, Nishio Y, Nakajima T, Lipes MA, King GL (1999) Overexpression of core 2 N-acetylglycosaminyltransferase enhances cytokine actions and induces hypertrophic myocardium in transgenic mice. FASEB J 13:2329–2337PubMedGoogle Scholar
  14. Li CM, Adler KB, Cheng PW (1998) Mucin biosynthesis: molecular cloning and expression of bovine lung mucin core 2 N-acetylglucosaminyltransferase cDNA. Am J Respir Cell Mol Biol 18:343–352PubMedGoogle Scholar
  15. Machida E, Nakayama J, Amano J, Fukada M (2001) Clinicopathological Significance of Core2 β1,6-N-Acetylglucosaminyltransferase Messenger RNA Expressed in the Pulmonary Adenocarcinoma Determined by in Situ Hybridization. Cancer Res 61:2226–2231PubMedGoogle Scholar
  16. Maemura K, Fukuda M (1992) Poly-N-acetyllactosaminyl O-glycans attached to leuko-sialin. The presence of sialyl Lex structures in O-glycans. J Biol Chem 267:24379–24386PubMedGoogle Scholar
  17. Nishio Y, Warren CE, Buczek-Thomas JA, Rulfs J, Koya D, Aiello LP, Feener EP, Miller TB Jr, Dennis JW, King GL (1995) Identification and characterization of a gene regulating enzymatic glycosylation which is induced by diabetes and hyperglycemia specifically in rat cardiac tissue. J Clin Invest 96:1759–1767PubMedCrossRefGoogle Scholar
  18. Piller F, Piller V, Fox RI, Fukuda M (1988) Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem 263:15146–15150PubMedGoogle Scholar
  19. Piller F, Le Deist F, Weinberg KI, Parkman R, Fukuda M (1991) Altered O-glycan synthesis in lymphocytes from patients with Wiskott-Aldrich syndrome. J Exp Med 173:1501–1510PubMedCrossRefGoogle Scholar
  20. Priatel JJ, Chui D, Hiraoka N, Simmons CJ, Richardson KB, Page DM, Fukuda M, Varki NM, Marth JD (2000) The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis [In Process Citation]. Immunity 12:273–283PubMedCrossRefGoogle Scholar
  21. Saitoh O, Piller F, Fox RI, Fukuda M (1991) T-lymphocytic leukemia expresses complex, branched O-linked oligosaccharides on a major sialoglycoprotein, leukosialin. Blood 77:1491–1499PubMedGoogle Scholar
  22. Schachter H, Williams D (1982) Biosyntheses of mucus glycoproteins. In: Chantier EN, Elder JB, Elstein M (eds) Mucus in health and disease, vol. II. Plenum Press, New York, pp 3–28CrossRefGoogle Scholar
  23. Schwientek T, Nomoto M, Levery SB, Merkx G, van Kessel AG, Bennett EP, Hollingsworth MA, Clausen H (1999) Control of O-glycan branch formation. Molecular cloning of human cDNA encoding a novel β1,6-N-acetylglucosaminyltransferase forming core 2 and core 4. J Biol Chem 274:4504–4512PubMedCrossRefGoogle Scholar
  24. Schwientek T, Yeh JC, Levery SB, Keck B, Nerkx G, van Kessel AD, Fukuda M, Clausen H (2000) Control of O-glycan branch formation: molecular cloning and characterizaiton of a novel thymus-associated core 2 β1,6-N-acetylglucosaminyltransferase. J Biol Chem 275:11106–11113PubMedCrossRefGoogle Scholar
  25. Sekine M, Nara K, Suzuki A (1997) Tissue-specific regulation of mouse core 2 β-1,6-N-acetylglucosaminyltransferase. J Biol Chem 272:27246–27252PubMedCrossRefGoogle Scholar
  26. Shimodaira K, Nakayama J, Nakamura N, Hasebe O, Katsuyama T, Fukuda M (1997) Carcinoma-associated expression of core 2 β1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: role of O-glycans in tumor progression. Cancer Res 57:5201–5206PubMedGoogle Scholar
  27. Skrincosky D, Kain R, El-Battari A, Exner M, Kerjaschki D, Fukuda M (1997) Altered Golgi localization of core 2 β1,6-N-acetylgrucosaminyltransferase leads to decreased synthesis of branched O-glycans. J Biol Chem 272:22695–22702PubMedCrossRefGoogle Scholar
  28. Tsuboi S, Fukuda M (1997) Branched O-linked oligosaccharides ectopically expressed in transgenic mice reduce primary T-cell immune responses. EMBO J 16:6364–6373PubMedCrossRefGoogle Scholar
  29. Tsuboi S, Fukuda M (1998) Overexpression of branched O-linked oligosaccharides on T cell surface glycoproteins impairs humoral immune responses in transgenic mice. J Biol Chem 273:30680–30687PubMedCrossRefGoogle Scholar
  30. Ujita M, McAuliffe J, Schwientek T, Almeida R, Hindsgaul O, Clausen H, Fukuda M (1998) Synthesis of pory-N-acetyllactosamine in core 2 branched O-glycans. The requirement of novel β-1,4-galactosyltransferase IV and β1,3-N-acetylglucosaminyltransferase. J Biol Chem 273:34843–34849PubMedCrossRefGoogle Scholar
  31. Whitehouse C, Burchell J, Gschmeissner S, Brockhausen I, Lloyd KO, Taylor-Papadimitriou J (1997) A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Golgi apparatus inhibits the development of core-2-based O-glycans. J Cell Biol 137:1229–1241PubMedCrossRefGoogle Scholar
  32. Wilkins PP, McEver RP, Cummings RD (1996) Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J Biol Chem 271:18732–18742PubMedCrossRefGoogle Scholar
  33. Williams D, Longmore G, Matta KL, Schachter H (1980) Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-GlcNAcGal β1-3GalNAc(GlcNAc leads to GalNAc) β6-N-acetylglucosaminyltrans-ferase. J Biol Chem 255:11253–11261PubMedGoogle Scholar
  34. Yeh JC, Ong E, Fukuda M (1999) Molecular cloning and expression of a novel β1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J Biol Chem 274:3215–3221PubMedCrossRefGoogle Scholar
  35. Yeh JC, Hiraoka N, Petryniak B, Nakayama J, Ellies L, Rabuka D, Hindsgaul O, Marth J, Lowe J, Fukuda M (2001) Novel Sulfated Lymphocyte Homing Receptors and Their Control by a Corel Extension β1,3-N-Acetylglucosaminyltransferase. Cell 105:957–969PubMedCrossRefGoogle Scholar
  36. Yousefi S, Higgins E, Daoling Z, Pollex-Kruger A, Hindsgaul O, Dennis JW (1991) Increased UDP-GlcNAc:Gal β1-3GaLNAc-R (GlcNAc to GaLNAc) β1,6-N-acetylglucosaminyl-transferase activity in metastatic murine tumor cell lines. Control of polylactosamine synthesis. J Biol Chem 266:1772–1782PubMedGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Minoru Fukuda
    • 1
  • Tilo Schwientek
    • 2
  • Henrik Clausen
    • 2
  1. 1.Glycobiology ProgramThe Burnham InstituteLa JollaUSA
  2. 2.School of DentistryUniversity of CopenhagenCopenhagen NDenmark

Personalised recommendations