β6-N-Acetylglucosaminyltransferase (IGnT)

  • Minoru Fukuda


I-branching β6-N-acetylglucosaminyltransferase (IGnT) is a glycosyltransferase that catalyzes the transfer of GlcNAc from UDP-GlcNAc to β1,4-linked Gal residue in a linear poly-N-acetyllactosamine, ±Galβ1-4GlcNAcβ1-3Galβ1-4Glc(NAc)-R, forming ±Galβ1-4GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-4Glc(NAc)-R. The formation of the I branch is usually followed by galactosylation with β4-galactosyltransferase I, resulting in the I antigen. The I-antigen can be further modified to express functional oligosaccharides, such as sialyl Lewis X (Fig. 1).
Fig. 1

Biosynthetic steps of I-branches containing sialyl Lewis X termini. A linear poly-N-acetyllactosamine (i-antigen) is converted to a branched poly-N-acetyllactosamine (I-antigen) by the actions of cIGnT and β4-galactosyltransferase. By dIGnT, a branch is added to GlcNAcB1-3Galβ1-4GlcN(Ac)βl-R acceptor. I-branched poly-N-acetyllactosamines can be further modified to express sialyl Lewis X by the actions of α3-sialyltransferase and α3-fucosyltransferase (Fuc-TVII)


Embryonal Carcinoma Cell Galactose Residue Bovine Colostrum Human Teratocarcinoma Cell Functional Oligosaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bierhuizen MF, Mattei MG, Fukuda M (1993) Expression of the developmental I antigen by a cloned human cDNA encoding a member of a β1,6-N-acetylglucosaminyltrans-ferase gene family. Gene Dev 7:468–478PubMedCrossRefGoogle Scholar
  2. Blanken WM, Hooghwinkel GJ, Van Den Eijnden DH (1982) Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum β-N-acetyl-D-glucosaminide β 1 leads to 4-galactosyltransferase. Eur J Biochem 127:547–552PubMedCrossRefGoogle Scholar
  3. Dabrowski U, Hanfland P, Egge H, Kuhn S, Dabrowski J (1984) Immunochemistry of I/i-active oligo-and polyglycosylceramides from rabbit erythrocyte membranes. Determination of branching patterns of a ceramide pentadecasaccharide by 1H nuclear magnetic resonance. J Biol Chem 259:7648–7651PubMedGoogle Scholar
  4. Feizi T, Childs RA, Watanabe K, Hakomori SI (1979) Three types of blood group I specificity among monoclonal anti-I autoantibodies revealed by analogues of a branched erythrocyte glycolipid. J Exp Med 149:975–980PubMedCrossRefGoogle Scholar
  5. Fukuda M, Dell A, Oates JE, Fukuda MN (1984) Structure of branched lactosaminogly-can, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J Biol Chem 259:8260–8273PubMedGoogle Scholar
  6. Fukuda MN, Dell A, Oates JE, Fukuda M (1985) Embryonal lactosaminoglycan. The structure of branched lactosaminoglycans with novel disialosyl (sialyl α 2,9 sialyl) terminals isolated from PA1 human embryonal carcinoma cells. J Biol Chem 260:6623–6631PubMedGoogle Scholar
  7. Gu J, Nishikawa A, Fujii S, Gasa S, Taniguchi N (1992) Biosynthesis of blood group I and i antigens in rat tissues. Identification of a novel β1-6-N-acetylglucosaminyltrans-ferase. J Biol Chem 267:2994–2999Google Scholar
  8. Hanisch FG, Uhlenbruck G, Peter-Katalinic J, Egge H, Dabrowski J, Dabrowski U (1989) Structures of neutral O-linked polylactosaminoglycans on human skim milk mucins. A novel type of linearly extended poly-N-acetyllactosamine backbones with Gal β(1-4) GlcNAc β(1-6) repeating units. J Biol Chem 264:872–883PubMedGoogle Scholar
  9. Kapadia A, Feizi T, Evans MJ (1981) Changes in the expression and polarization of blood group I and i antigens in post-implantation embryos and teratocarcinomas of mouse associated with cell differentiation. Exp Cell Res 131:185–195PubMedCrossRefGoogle Scholar
  10. Leppanen A, Zhu Y, Maaheimo H, Helin J, Lehtonen E, Renkonen O (1998) Biosynthesis of branched polylactosaminoglycans. Embryonal carcinoma cells express midchain β1,6-N-acetylglucosaminyltransferase activity that generates branches to preformed linear backbones. J Biol Chem 273:17399–17405PubMedCrossRefGoogle Scholar
  11. Magnet AD, Fukuda M (1997) Expression of the large I antigen-forming β-1,6-N-acetyl-glucosaminyltransferase in various tissues of adult mice. Glycobiology 7:285–295PubMedCrossRefGoogle Scholar
  12. Mattila P, Salminen H, Hirvas L, Niittymaki J, Salo H, Niemela R, Fukuda M, Renkonen O, Renkonen R (1998) The centrally acting β1,6N-acetylglucosaminyltransferase (GlcNAc to gal). Functional expression, purification, and acceptor specificity of a human enzyme involved in midchain branching of linear poly-N-acetyllactosamines. J Biol Chem 273:27633–27639PubMedCrossRefGoogle Scholar
  13. Muramatsu T, Gachelin G, Damonneville M, Delarbre C, Jacob F (1979) Cell surface carbohydrates of embryonal carcinoma cells: polysaccharidic side chains of F9 antigens and of receptors to two lectins, FBP and PNA. Cell 18:183–191PubMedCrossRefGoogle Scholar
  14. Piller F, Cartron JP, Maranduba A, Veyrieres A, Leroy Y, Fournet B (1984) Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAc β1-3Gal(-R) β1-6(GlcNAc to Gal) N-acetylglucosaminyltransferase in hog gastric mucosa. J Biol Chem 259:13385–13390PubMedGoogle Scholar
  15. Romans DG, Tilley CA, Dorrington KJ (1980) Monogamous bivalency of IgG antibodies. I. Deficiency of branched ABHI-active oligosaccharide chains on red cells of infants causes the weak antiglobulin reactions in hemolytic disease of the newborn due to ABO incompatibility. J Immunol 124:2807–2811PubMedGoogle Scholar
  16. Ropp PA, Little MR, Cheng PW (1991) Mucin biosynthesis: purification and characterization of a mucin β6 N-acetylglucosaminyltransferase. J Biol Chem 266:23863–23871PubMedGoogle Scholar
  17. Sakamoto Y, Taguchi T, Tano Y, Ogawa T, Leppanen A, Kinnunen M, Aitio O, Parmanne P, Renkonen O, Taniguchi N (1998) Purification and characterization of UDP-GlcNAc:Galβ1-4GlcNAcβ1-3*Galβ1-4Glc(NAc)-R(GlcNAc to *Gal) β1,6N-acetylglu-cosaminyltransferase from hog small intestine. J Biol Chem 273:27625–27632PubMedCrossRefGoogle Scholar
  18. Sasaki K, Kurata-Miura K, Ujita M, Angata K, Nakagawa S, Sekine S, Nishi T, Fukuda M (1997) Expression cloning of cDNA encoding a human β-1,3-N-acetylglucosaminyl-transferase that is essential for poly-N-acetyllactosamine synthesis. Proc Natl Acad Sci USA 94:14294–14299PubMedCrossRefGoogle Scholar
  19. Schachter H, Brockhausen I (1992) In: Allen HJ, Kisailus EC (eds) Glycoconjugates: composition, structure, and function, 1st edn. Marcel Dekker, New York, pp 263–332Google Scholar
  20. Schwientek T, Nomoto M, Levery SB, Merkx G, van Kessel AG, Bennett EP, Hollingsworth MA, Clausen H (1999) Control of O-glycan branch formation. Molecular cloning of human cDNA encoding a novel β1,6-N-acetylglucosaminyltransferase forming core 2 and core 4. J Biol Chem 274:4504–4512PubMedCrossRefGoogle Scholar
  21. Turunen JP, Majuri ML, Seppo A, Tiisala S, Paavonen T, Miyasaka M, Lemstrom K, Penttila L, Renkonen O, Renkonen R (1995) De novo expression of endothelial sialyl Lewis(a) and sialyl Lewis(x) during cardiac transplant rejection: superior capacity of a tetravalent sialyl Lewis(x) oligosaccharide in inhibiting L-selectin-dependent lymphocyte adhesion. J Exp Med 182:1133–1141PubMedCrossRefGoogle Scholar
  22. Ujita M, McAuliffe J, Suzuki M, Hindsgaul O, Clausen H, Fukuda MN, Fukuda M (1999) Regulation of I-branched pory-N-acetyllactosamine synthesis. Concerted actions by I-extension enzyme, I-branching enzyme, and β1,4-galactosyltransferase I. J Biol Chem 274:9296–9304PubMedCrossRefGoogle Scholar
  23. van den Eijnden DH, Winterwerp H, Smeeman P, Schiphorst WE (1983) Novikoff ascites tumor cells contain N-acetyllactosaminide β 1 → to 3 and β 1 → to 6 N-acetylglu-cosaminyltransferase activity. J Biol Chem 258:3435–3437PubMedGoogle Scholar
  24. Watanabe K, Hakomori SI, Childs RA, Feizi T (1979) Characterization of a blood group I-active ganglioside. Structural requirements for I and i specificities. J Biol Chem 254:3221–3228PubMedGoogle Scholar
  25. Yeh JC, Ong E, Fukuda M (1999) Molecular cloning and expression of a novel β-1,6-N-acetylglucosaminyltransferase that forms core 2, core 4, and I branches. J Biol Chem 274:3215–3221PubMedCrossRefGoogle Scholar
  26. Zdebska E, Krauze R, Koscielak J (1983) Structure and blood-group I activity of poly(glycosyl)-ceramides. Carbohydr Res 120:113–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Minoru Fukuda
    • 1
  1. 1.Glycobiology ProgramThe Burnham InstituteLa JollaUSA

Personalised recommendations