β3-N-Acetylglucosaminyltransferase (iGnT)

  • Minoru Fukuda


β3-N-Acetylglucosaminyrtransferase, i-extension enzyme (iGnT), is a glycosyltransferase that catalyzes the transfer of GlcNAc from UDP-GlcNAc to Gal in the Galβ1-4Glc(NAc) structure with β1,3-linkage. In N-glycans, the addition of β1,3- linked GlcNAc is usually followed by galactosylation by β1,4-galactosyltransferase I, the predominant member of the β1,4-galactosyltransferase gene family (Ujita et al. 1999, 2000). It has been shown that poly-N-acetyllactosamines can be efficiently modified to form functional oligosaccharides such as sialyl Lex.


Chinese Hamster Ovary Cell Neisseria Meningitidis Recombinant Human Erythropoietin Baby Hamster Kidney Cell Myelogenous Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angata K, Yen T-Y, El-Battari A, Macher BA, Fukuda M (2001) Unique disulfide bond structures found in ST8Sia IV polysialyltransferase are required for its activity. J Biol Chem 276:15369–15377PubMedCrossRefGoogle Scholar
  2. Bai X, Dapeng Z, Brown J, Hennet T, Esko J (2001) Biosynthesis of the linkage region of glycosaminoglycans: Cloning and activity of Glactosyltransferase II, the sixth member of the β1,3galactosyltransferase family (β3GalT6). J Biol Chem in pressGoogle Scholar
  3. Blixt O, van Die I, Norberg T, van den Eijnden DH (1999) High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAcβ-1→3Gal and GalNAcβ-1→3Gal linkages. Glycobiology 9:1061–1071PubMedCrossRefGoogle Scholar
  4. Bock K, Duus JO, Hindsgaul O, Lindh I (1992) Analysis of conformationally restricted models for the (1-6)-branch of asparagine-linked oligosaccharides by NMRT spectroscopy and HSEA calculation. Carbohydr Res 228:1–20PubMedCrossRefGoogle Scholar
  5. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) β1-6 branching of As n-linked oligosaccharides is directly associated with metastasis. Science 236:582–585PubMedCrossRefGoogle Scholar
  6. Fukuda M, Spooncer E, Oates JE, Dell A, Klock JC (1984) Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J Biol Chem 259:10925–10935PubMedGoogle Scholar
  7. Fukuda M, Carlsson SR, Klock JC, Dell A (1986) Structures of O-linked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. J Biol Chem 261:12796–12806PubMedGoogle Scholar
  8. Handa K, Stroud MR, Hakomori S (1997) Sialosyl-fucosyl Poly-LacNAc without the sialosyl-Lex epitope as the physiological myeloid cell ligand in E-selectin-dependent adhesion: studies under static and dynamic flow conditions. Biochemistry 36:12412–12420PubMedCrossRefGoogle Scholar
  9. Hennet T, Dinter A, Kuhnert P, Mattu TS, Rudd PM, Berger EG (1998) Genomic cloning and expression of three murine UDP-galactose: β-N-acetylglucosamine β1,3-galactosyltransferase genes. J Biol Chem 273:58–65PubMedCrossRefGoogle Scholar
  10. Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369PubMedCrossRefGoogle Scholar
  11. Hokke CH, Bergwerff AA, Van Dedem GW, Kamerling JP, Vliegenthart JF (1995) Structural analysis of the sialylated N-and O-linked carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. Sialylation patterns and branch location of dimeric N-acetyllactosamine units. Eur J Biochem 228:981–1008PubMedCrossRefGoogle Scholar
  12. Kawashima H, Yamamoto K, Osawa T, Irimura T (1993) Purification and characterization of UDP-GlcNAc:Gal-β-1-4Glc(NAc) β-1,3-N-acetylglucosaminyltransferase (poly-N-acetyllactosamine extension enzyme) from calf serum. J Biol Chem 268:27118–27126PubMedGoogle Scholar
  13. Kyowa Hakko Kogyo KK (July 5, 1994) Japanese Patent JP6181759Google Scholar
  14. Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579PubMedGoogle Scholar
  15. Mizoguchi A, Takasaki S, Maeda S, Kobata A (1984) Changes in asparagine-linked sugar chains of human promyelocytic leukemic cells (HL-60) during monocytoid differentiation and myeloid differentiation. Appearance of high mannose-type oligosaccharides in neutral fraction. J Biol Chem 259:11943–11948Google Scholar
  16. Niemelä R, Natunen J, Majuri ML, Maaheimo H, Heiin J, Lowe JB, Renkonen O, Renkonen R (1998) Complementary acceptor and site specificities of FucT IV and FucT VII allow effective biosynthesis of sialyl-TriLex and related polylactosamines present on glycoprotein counterreceptors of selectins. J Biol Chem 273:4021–4026PubMedCrossRefGoogle Scholar
  17. Ohyama C, Tsuboi S, Fukuda M (1999) Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J 18:1516–1525PubMedCrossRefGoogle Scholar
  18. Pierce M, Arango J (1986) Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri-and tetraantennary glycopeptides containing [GlcNAc-β (1,6)MaN-α (1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 261:10772–10777PubMedGoogle Scholar
  19. Piller F, Cartron JP (1983) UDP-GlcNAc:Gal β 1-4Glc(NAc) β 1-3N-acetylglucosaminyl-transferase. Identification and characterization in human serum. J Biol Chem 258:12293–12299PubMedGoogle Scholar
  20. Saitoh O, Wang WC, Lotan R, Fukuda M (1992) Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem 267:5700–5711PubMedGoogle Scholar
  21. Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262:12059–12076PubMedGoogle Scholar
  22. Sasaki K, Kurata-Miura K, Ujita M, Angata K, Nakagawa S, Sekine S, Nishi T, Fukuda M (1997) Expression cloning of cDNA encoding a human β-1,3-N-acetylglucosaminyl-transferase that is essential for poly-N-acetyllactosamine synthesis. Proc Natl Acad Sci USA 94:14294–14299PubMedCrossRefGoogle Scholar
  23. Shiraishi N, Natsume A, Togayachi A, Endo T, Akashima T, Yamada Y, Imai N, Nakagawa S, Koizumi S, Sekine S, Narimatsu H, Sasaki K (2001) Identification and characterization of three novel β1,3-N-acetylglucosaminyltransferases structurally related to the β1,3-galactosyltransferase family. J Biol Chem 276:3498–3507PubMedCrossRefGoogle Scholar
  24. Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, Natsume A, Mio H, Inokuchi J-I, Iramura T, Sasaki K, Narimatsu H (2001) Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide β1,3-N-acetylglucosaminyltransferase (β3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis x epitopes on glycolipids. J Biol Chem 276:22032–22040PubMedCrossRefGoogle Scholar
  25. Toppila S, Renkonen R, Penttila L, Natunen J, Salminen H, Helin J, Maaheimo H, Renkonen O (1999) Enzymatic synthesis of α3′sialylated and multiply α3fucosylated biantennary polylactosamines. A bivalent [sialyl diLex]-saccharide inhibited lymphocyte-endothelium adhesion orgaN-selectively. Eur J Biochem 261:208–215PubMedCrossRefGoogle Scholar
  26. Turunen JP, Majuri M-L, Seppo A, Tiisala S, Paavonen T, Miyasaka M, Lemström K, Penttilä L, Renkonen O, Renokonen R (1995) de Novo expression of sialyl Lewisa and sialyl Lewisx during cardiac transplant rejection: superior capacity of a tetravalent sialyl Lewisx oligosaccharide in inhibiting L-selectin-dependent lymphocyte adhesion. J Exp Med 182:1133–1142PubMedCrossRefGoogle Scholar
  27. Ujita M, McAuliffe J, Schwientek T, Almeida R, Hindsgaul O, Clausen H, Fukuda M (1998) Synthesis of poly-N-acetyllactosamine in core2-branched O-glycans. The requirement of novel β-1,4-galactosyltransferase IV and β-1,3-N-acetylglucosaminyltransferase. J Biol Chem 273:34843–34849PubMedCrossRefGoogle Scholar
  28. Ujita M, McAuliffe J, Hindsgaul O, Sasaki K, Fukuda MN, Fukuda M (1999) Poly-N-acetyllactosamine synthesis in branched N-glycans is controlled by complemental branch specificity of I-extension enzyme and β1,4-galactosyltransferase I. J Biol Chem 274:16717–16726PubMedCrossRefGoogle Scholar
  29. Ujita M, Misra AK, McAuliffe J, Hindsgaul O, Fukuda M (2000) Poly-N-acetyllactosamine extension in N-glycans and core2-and core4-branched O-glycans is differentially controlled by i-extension enzyme and different members of the β1,4-galactosyltransferase gene family. J Biol Chem 275:15868–15875PubMedCrossRefGoogle Scholar
  30. van den Eijnden DH, Koenderman AH, Schiphorst WE (1988) Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GlcNAc:N-acetyllactosaminide β1,3-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid. J Biol Chem 263:12461–12471PubMedGoogle Scholar
  31. Watson E, Bhide A, van Halbeek H (1994) Structure determination of the intact major sialylated oligosaccharide chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. Glycobiology 4:227–237PubMedCrossRefGoogle Scholar
  32. Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A (1984) Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 259:10834–10840PubMedGoogle Scholar
  33. Yeh J-C, Hiraoka N, Petryniak B, Nakayama J, Ellies LG, Rabuka D, Hindsgaul O, Marth JD, Lowe JB, Fukuda M (2001) Novel sulfated lymphocyte homing receptors and their control by a corel extension β1,3-N-acetylglucosaminyltransferase Cell 105:957–969PubMedCrossRefGoogle Scholar
  34. Zhou D, Dinter A, Gutierrez Gallego R, Kamerling JP, Vliegenthart JF, Berger EG, Hennet T (1999) A β-1,3-N-acetylglucosaminyltransferase with poly-N-acetyllactosamine synthase activity is structurally related to β1,3-galactosyltransferases. Proc Natl Acad Sci U.S.A 96:406–411PubMedCrossRefGoogle Scholar
  35. Zhou D, Dinter A, Guiterrez Gallego R, Kamerling JP, Vliegenthart JF, Berger EG, Hennet T (2000) Correction for vol. 96, p. 406. Proc Natl Acad Sci USA 97:11673–11675Google Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Minoru Fukuda
    • 1
  1. 1.Glycobiology ProgramThe Burnham InstituteLa JollaUSA

Personalised recommendations