Advertisement

N-Acetylglucosaminyltransferase-V

  • James W. Dennis

Abstract

N-Acetylglucosaminyltransferase-V (GnT-V, GnT-V or Mgat5) catalyzes the transfer of GlcNAc from UDP-GlcNAc to the OH-6 position of the α-linked Man residue in GlcNAcβ1-2Manα1-6Manβ1-4GlcNAc. This acceptor sequence is found in N-glycan intermediates at the medial Golgi stage of glycoprotein production (Fig. 1). Maturation of the N-glycans with passage of glycoproteins through the trans-Golgi produces the tri (2,2,6)- and tetra (2,4,2,6)-antennary complex-type N-glycans. A variety of oligosaccharide sequences are added to complete these glycans, comprising various combinations of N-acetyllactosamine and poly-N-acetyllactosamine capped with sialic acid and fucose. GnT-V is a rate-limiting enzyme for the addition of poly-N-acetyllactosamine to N-glycans. In vitro assays indicate that tri (2,2,6)- and tetra (2,4,2,6)-antennary glycans are preferentially elongated by β3GnT(i) and β4GalT to produce poly-N-acetyllactosamine (van den Eijnden et al. 1988). Furthermore, the mutant lymphoma cell lines BW5147-PHAR2.1 (Cummings and Kornfeld 1984), and KBL-1 (Yousefi et al. 1991) are GnT-V-deficient and severely depleted of poly-N- acetyllactosamine on N-glycans, but not the O-glycans. These somatic cell mutants were selected for resistance to the toxic effects of leukoagglutinin (L-PHA) in culture. L-PHA binds preferentially to mature GnT-V products, notably the Galβ1-4GlcNAcβ1- 6 (Galβ1-4GlcNAcβ1-2)Manα1-6 portion of tri- and tetraantennary N-glycans (Cummings and Kornfeld 1982) (Fig. 1). GnT-V-modifled N-glycans detected by L-PHA lectin histochemistry are often increased in human breast and colorectal carcinomas, and correlate with poor prognosis and reduced patient survival time (Fernandes et al. 1991; Seelentag et al. 1998).
Fig. 1

Schematic diagram of the Golgi N-glycan biosynthesis pathway showing GnT-V (TV) in the production oftri (2,2,6)and tetra (2,4,2,6)-antennary (the numbers in parentheses refer to the linkages of the antennae from left to right). Open diamonds, sialic acid; solid circles, galactose; solid squares, GlcNAc; open circles, mannose. TI, TII, TIV, TV, and T(i) refer to the GlcNAc-transferases; GalT is β1,4- galactosyltransferase; ST is α-sialyltransferase. The shaded ovals mark the minimal acceptor for GnT-V, and the shaded boxes mark the L-PHA binding site in the mature N-glycans

Keywords

Sialic Acid Rous Sarcoma Virus Baby Hamster Kidney Cell Somatic Cell Mutant Mouse Lymphoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asada M, Furukawa K, Kantor C, Gahmberg CG, Kobata A (1991) Structural study of the sugar chains of human leukocyte cell adhesion molecules CDU/CD 18. Biochemistry 30:1561–1571PubMedCrossRefGoogle Scholar
  2. Buck CA, Glick MC, Warren L (1970) A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells. Biochemistry 9:4567–4576PubMedCrossRefGoogle Scholar
  3. Carlsson SR, Fukuda M (1990) The polylactosaminoglycans of human lysosomal membrane glycoproteins lamp-1 and lamp-2. J Biol Chem 265:20488–20495PubMedGoogle Scholar
  4. Chen L, Zhang W, Fregien N, Pierce M (1998) The her-2/neu oncogene stimulates the transcription of N-acetylglucosaminyltransferase V and expression of its cell surface oligosaccharide products. Oncogene 17:2087–2093PubMedCrossRefGoogle Scholar
  5. Cummings RD, Kornfeld S (1982) Characterization of the structural determinants required for the high-affinity interaction of asparagine-linked oligosaccharides with immobi-lized Phaseolus vulgaris leukoagglutinating and erythro agglutinating lectin. J Biol Chem 257:11230–11234PubMedGoogle Scholar
  6. Cummings RD, Kornfeld S (1984) The distribution of repeating Gal β1-4GlcNAc β1-3 sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell line BW5147 and PHAR 2.1. J Biol Chem 259:6253–6260PubMedGoogle Scholar
  7. Cummings RD, Trowbridge IS, Kornfeld S (1982) A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc:α-D-mannoside β1,6-N-acetylglucosaminyltransferase. J Biol Chem 257:13421–13427PubMedGoogle Scholar
  8. Datti A, Donovan RS, Korczak B, Dennis JW (2000) A homogeneous cell-based assay to identify N-linked carbohydrate processing inhibitors. Anal Biochem 280:137–142PubMedCrossRefGoogle Scholar
  9. Demetriou M, Nabi IR, Coppolino M, Dedhar S, Dennis JW (1995) Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J Cell Biol 130:383–392PubMedCrossRefGoogle Scholar
  10. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T cell receptor and autoimmunity by Mgat5 N-glycosylation. Nature 409:733–739PubMedCrossRefGoogle Scholar
  11. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) β 1-6 branching of Asnlinked oligosaccharides is directly associated with metastasis. Science 236:582–585PubMedCrossRefGoogle Scholar
  12. Do K-Y, Fregien N, Pierce M, Cummings RD (1994) Modification of glycoproteins by N-acetylglucosaminyltransferase V is greatly influenced by accessibility of the enzyme to oligosacharide acceptors. J Biol Chem 269:23456–23464PubMedGoogle Scholar
  13. Donovan RS, Datti A, Baek M, Wu Q, Sas IJ, Korczak B, Berger EG, Roy R, Dennis JW (2000) A solid-phase glycosyltransferase assay for high-throughput screening in drug discovery research. Glycoconj J 16:607–615CrossRefGoogle Scholar
  14. Fernandes B, Sagman U, Auger M, Demetriou M, Dennis JW (1991) β-1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res 51:718–723PubMedGoogle Scholar
  15. Granovsky M, Fode C, Warren CE, Campbell RM, Marth JD, Pierce M, Fregien N, Dennis JW (1995) GlcNAc-transferase V and core 2 GlcNAc-transferase expression in the developing mouse embryo. Glycobiology 5:797–806PubMedCrossRefGoogle Scholar
  16. Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R, Dennis JW (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 6:306–312PubMedCrossRefGoogle Scholar
  17. Guilloux Y, Lucas S, Brichard VG, Van Pel A, Viret C, De Plaen E, Brasseur F, Lethe B, Jotereau F, Boon T (1996) A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is incoded by an intron sequence of the N-acetylglucosaminyltrans-ferase V gene. J Exp Med 183:1173–1183PubMedCrossRefGoogle Scholar
  18. Heffernan M, Dennis J (1989) Molecular characterization of P2B/LAMP-1: a major protein target of a metastasis-associated oligossacharide structure. Cancer Res 49:6077–6084PubMedGoogle Scholar
  19. Hubbard SC, Kranz DM, Longmore GD, Sitkovsky MV, Eisen HN (1986) Glycosylation of the T cell antigen-specific receptor and its potential role in lectin-mediated cytotoxicity. Proc Natl Acad Sci USA 83:1852–1856PubMedCrossRefGoogle Scholar
  20. Kang R, Saito H, Ihara Y, Miyoshi E, Koyama N, Sheng Y, Taniguchi N (1996) Transcriptional regulation of the N-acetylglucosaminyltranserase V gene in human bile duct carcinoma cells (HuCC-T1) is mediated by Ets-1. J Biol Chem 271:26706–26712PubMedCrossRefGoogle Scholar
  21. Kanie O, Crawley SC, Palcic MM, Hindsgaul O (1994) Key involvement of all three GlcNAc hydroxyl groups in the recognition of β-D-GlcpNAc-(1→2)-α-D-Manp-(1→6)-β-D-Glcp-OR by N-acetylglucosaminyltransferase-V. Bioorg Med Chem 2:1234–1241CrossRefGoogle Scholar
  22. Khan SH, Crawley SC, Kanie O, Hindsgaul O (1993) A trisaccharide acceptor analog for N-acetylglucosaminyltransferase V which binds to the enzyme but sterically precludes the transfer reaction. J Biol Chem 268:2468–2473PubMedGoogle Scholar
  23. Korczak B, Le T, Elowe S, Datti A, Dennis JW (2000) Minimal catalytic domain of N-acetylglucosaminyltransferase V. Glycobiology 10:595–599PubMedCrossRefGoogle Scholar
  24. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, Vogt TF (2000) Fringe is a glycosyltransferase that modifies Notch. Nature 406:369–375PubMedCrossRefGoogle Scholar
  25. Nakayama J, Yeh JC, Misra AK, Ito S, Katsuyama T, Fukuda M (1999) Expression cloning of a human alpha 1, 4-N-acetylglucosaminyltransferase that forms GlcNAcα1→ 4Galβ→R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proc Natl Acad Sci USA 96:8991–8996PubMedCrossRefGoogle Scholar
  26. Pierce M, Arango J (1986) Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri-and tetraantennary glycopeptides containing [GlcNAc-β(1,6)Man-α(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 261:10772–10777PubMedGoogle Scholar
  27. Saito H, Nishikawa A, Gu J, Ihara Y, Soejima H, Wada Y, Sekiya C, Niikawa N, Taniguchi N (1994) cDNA cloning and chromosomal mapping of human N-acetylglucosaminyl-transferase V. Biochem Biophys Res Commun 198:318–327PubMedCrossRefGoogle Scholar
  28. Schachter H (1986) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64:163–181PubMedCrossRefGoogle Scholar
  29. Seelentag WK, Li WP, Schmitz SF, Metzger U, Aeberhard P, Heitz PU, Roth J (1998) Prognostic value of β1,6-branched oligosaccharides in human colorectal carcinoma. Cancer Res 58:5559–5564PubMedGoogle Scholar
  30. Shoreibah MG, Hindsgaul O, Pierce M (1992) Purification and characterization of rat kidney UDP-N-acetylglucosamine: α-6-D-mannosidase β-1,6-N-acetylglucosaminyl-transferase. J Biol Chem 267:2920–2927PubMedGoogle Scholar
  31. Shoreibah M, Perng G-S, Adler B, Weinstein J, Basu R, Cupples R, Wen D, Browne JK, Buckhaults P, Fregien N, Pierce M (1993) Isolation, characterization, and expression of cDNA encoding N-acetylglucosaminyltransferase V. J Biol Chem 268:15381–15385PubMedGoogle Scholar
  32. van den Eijnden DH, Koenderman AHL, Schiphorst WECM (1988) Biosynthesis of blood group i-active polylactosaminoglycans. J Biol Chem 263:12461–12465PubMedGoogle Scholar
  33. Warren CE, Krizus A, Roy PJ, Culotti JG, Dennis JW (2001) The non-essential C. elegans gene, gly-2, can rescue the N-acetylglucosaminyltransferase V mutation of Lec4 cells. J Biol Chem (in press)Google Scholar
  34. Weinstein J, Sundaram S, Wang X, Delgado D, Basu R, Stanley P (1996) A point mutation causes mistargeting of golgi GnT V in the Lec4A Chinese hamster ovary glycosylation mutant. J Biol Chem 271:27462–27469PubMedCrossRefGoogle Scholar
  35. Yamashita K, Tachibana Y, Ohkura T, Kobata A (1985) Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem 260:3963–3969PubMedGoogle Scholar
  36. Yousefi S, Higgins E, Doaling Z, Hindsgaul O, Pollex-Kruger A, Dennis JW (1991) Increased UDP-GlcNAc:Gal β1-3GalNAc-R (GlcNAc to GalNAc) β1-6 N-acetylglucosaminy1-transferase activity in transformed and metastatic murine tumor cell lines: control of polylactosamine synthesis. J Biol Chem 266:1772–1783PubMedGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • James W. Dennis
    • 1
    • 2
  1. 1.Samuel Lunenfeld Research InstituteMount Sinai HospitalTorontoCanada
  2. 2.Department of Molecular and Medical GeneticsUniversity of TorontoCanada

Personalised recommendations