Patterns of TP53 Mutations in Cancers of the Esophagus and Esophagogastric Junction: Correlation with Risk Factors and Functional Implications

  • Philippe Tanière
  • Katariina Castren
  • Pierre Hainaut
Conference paper


Mutation of TP53 is the most frequent genetic event in squamous cell carcinoma (SCC) and adenocarcinoma (ADC) of the esophagus. These mutations differ for SCC and ADC. In SCCs mutation patterns also differ from one geographic area to another. These mutations provide clues on the mutagenic mechanisms involved and confirm that SCC has multiple, region-specific causes.


Esophageal Cancer TP53 Mutation Esophagogastric Junction Esophageal Cancer Cell Squamous Cell Carcinoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Muñoz N, Day NE (1996) Esophageal cancer. In: Schottenfeld D, Fraumeni JF (eds) Cancer epidemiology and prevention. Oxford University Press, Oxford, pp 681–706Google Scholar
  2. 2.
    Bytzer P, Christensen PB, Damkier P, et al (1999) Adenocarcinoma of the esophagus and Barrett’s esophagus: a population-based study. Am J Gastroenterol 94:86–91PubMedCrossRefGoogle Scholar
  3. 3.
    DeMeester SR (1997) Management of Barrett’s esophagus free of dysplasia. Semin Thorac Cardiovasc Surg 9:279–284PubMedGoogle Scholar
  4. 4.
    Parkin DM, Whelan SC, Ferlay J, Raymond L, Young J (1997) Cancer incidence in five continents, vol VII. IARC Scientific Publication 143. IARC, LyonGoogle Scholar
  5. 5.
    Devesa SS, Blot WJ, Fraumeni JFJ (1998) Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049–2053PubMedCrossRefGoogle Scholar
  6. 6.
    Montesano R, Hollstein M, Hainaut P (1996) Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int J Cancer 69:225–235PubMedCrossRefGoogle Scholar
  7. 7.
    Tanière P, Montesano R, Hainaut P (in press) The natural history of esophageal cancer. In: Shields PE (ed) Methods in cancer risk assessment: from laboratory to the clinic. Dekker, New YorkGoogle Scholar
  8. 8.
    Hainaut P, Hollstein M (2000) P53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137PubMedCrossRefGoogle Scholar
  9. 9.
    Barrett MT, Sanchez CA, Prevo LJ, et al (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22:106–109PubMedCrossRefGoogle Scholar
  10. 10.
    Mandard AM, Hainaut P, Hollstein M (2000) Genetic steps in the development of squamous cell carcinoma of the esophagus. Mutat Res 462:335–342PubMedCrossRefGoogle Scholar
  11. 11.
    Gleeson CM, Sloan JM, McManus DT,et al (1998) Comparison of p53 and DNA content abnormalities in adenocarcinoma of the oesophagus and gastric cardia. Br J Cancer 77:277–286PubMedCrossRefGoogle Scholar
  12. 12.
    Ireland AP, Shibata DK, Chandrasoma P, et al (2000) Clinical significance of p53 mutations in adenocarcinoma of the esophagus and cardia. Ann Surg 231:179–187PubMedCrossRefGoogle Scholar
  13. 13.
    Tanière P, Martel-Planche G, Puttawibul P, et al (2000) TP53 mutations and MDM2 gene amplification in squamous-cell carcinomas of the esophagus in South Thailand. Int J Cancer 88:223–227PubMedCrossRefGoogle Scholar
  14. 14.
    Muto M, Hitomi Y, Ohtsu A, et al (2000) Association of aldehyde dehydrogenase 2 gene polymorphism with multiple oesophageal dysplasia in head and neck cancer patients. Gut 47:256–261PubMedCrossRefGoogle Scholar
  15. 15.
    Muto M, Hitomi Y, Ohtsu A, et al (2000) Acetaldehyde production by non-pathogenic Neisseria in human oral microfiora: implications for carcinogenesis in upper aerodigestive tract. Int J Cancer 88:342–350PubMedCrossRefGoogle Scholar
  16. 16.
    Murata J, Tada M, Iggo RD, et al (1997) Nitric oxide as a carcinogen: analysis by yeast functional assay of inactivating p53 mutations induced by nitric oxide. Mutat Res 379:211–218PubMedCrossRefGoogle Scholar
  17. 17.
    Souici AC, Mirkovitch J, Hausel P, et al (2000) Transition mutation in codon 248 of the p53 tumor suppressor gene induced by reactive oxygen species and a nitric oxide-releasing compound. Carcinogenesis 21:281–287PubMedCrossRefGoogle Scholar
  18. 18.
    Ambs S, Bennett WP, Merriam WG, et al (1999) Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst 91:86–88PubMedCrossRefGoogle Scholar
  19. 19.
    Gratas C, Tohma Y, Barnas C, et al (1998) Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. Cancer Res 58:2057–2062PubMedGoogle Scholar
  20. 20.
    Barnas C, Martel-Planche G, Furukawa Y, et al (1997) Inactivation of the p53 protein in cell lines derived from human esophageal cancers. Int J Cancer 71:79–87PubMedCrossRefGoogle Scholar
  21. 21.
    Kuroki T, Ikuta T, Kashiwagi M, et al (2000) Cholesterol sulfate, an activator of protein kinase C mediating squamous cell differentiation: a review. Mutat Res 462:189–195PubMedCrossRefGoogle Scholar
  22. 22.
    Gerharz CD, Ramp U, Dejosez M, et al (1999) Resistance to CD95 (APO-l/Fas)-mediated apoptosis in human renal cell carcinomas: an important factor for evasion from negative growth control. Lab Invest 79:1521–1534PubMedGoogle Scholar
  23. 23.
    Ramp U, Dejosez M, Mahotka C, et al (2000) Deficient activation of CD95 (APO-1/Fas)-mediated apoptosis: a potential factor of multidrug resistance in human renal cell carcinoma. Br J Cancer 82:1851–1859PubMedCrossRefGoogle Scholar
  24. 24.
    Spechler SJ, Dixon A, Genta R, Hainaut P, Lambert R, Siewert JR (2000) Adenocarcinoma of the oesophago-gastric junction. In: Hamilton S, Aaltonen L (eds) Pathology and genetics: tumours of the digestive system. IARC Press, Lyon, pp 32–36Google Scholar
  25. 25.
    Kilgore SP, Ormsby AH, Gramlich TL, et al (2000) The gastric cardia: fact or fiction? Am J Gastroenterol 95:921–924PubMedCrossRefGoogle Scholar
  26. 26.
    Ormsby AH, Kilgore SP, Goldblum JR, et al (2000) The location and frequency of intestinal metaplasia at the esophagogastric junction in 223 consecutive autopsies: implications for patient treatment and preventive strategies in Barrett’s esophagus. Mod Pathol 13:614–620PubMedCrossRefGoogle Scholar
  27. 27.
    Chandrasoma PT, Der R, Ma Y, et al (2000) Histology of the gastroesophageal junction: an autopsy study. Am J Surg Pathol 24:402–409PubMedCrossRefGoogle Scholar
  28. 28.
    Oberg S, Peters JH, DeMeester TR, et al (1997) Inflammation and specialized intestinal metaplasia of cardiac mucosa is a manifestation of gastroesophageal reflux disease. Ann Surg 226:522–530PubMedCrossRefGoogle Scholar
  29. 29.
    Momand J, Jung D, Wilczynski S, et al (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459PubMedCrossRefGoogle Scholar
  30. 30.
    DeLaurenzi V, Rossi A, Terrinoni A, et al (2000) P63 and p73 transactivate differentiation gene promoters in human keratinocytes. Biochem Biophys Res Commun 273:342–346CrossRefGoogle Scholar
  31. 31.
    Parsa R, Yang A, McKeon F, et al (1999) Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J Invest Dermatol 113:1099–1105PubMedCrossRefGoogle Scholar
  32. 32.
    Yamaguchi K, Wu L, Caballero OL, et al (2000) Frequent gain of the p40/p51/p63 gene locus in primary head and neck squamous cell carcinoma. Int J Cancer 86:684–689PubMedCrossRefGoogle Scholar
  33. 33.
    Hibi K, Trink B, Patturajan M, et al (2000) AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 97:5462–5467PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Philippe Tanière
    • 1
  • Katariina Castren
    • 1
  • Pierre Hainaut
    • 1
  1. 1.Group of Molecular Carcinogenesis, International Agency for Research on CancerWorld Health OrganizationLyon cedex 08France

Personalised recommendations