Skip to main content

Facilitating Controller Evolution in Morpho-functional Machines — A Bipedal Case Study

  • Conference paper
Morpho-functional Machines: The New Species
  • 160 Accesses

Abstract

Simulations of bipedal walking showed that the evolution of stable gaits can be greatly facilitated by harnessing design solutions inspired by those of biological organisms.

Three such areas are addressed in this paper: a) the use of passive dynamics such as free-swinging lower legs, knee caps and springy ankles, b) proportional derivative controllers (or their variants) as actuators, and c) a modular, specifically coupled neural controller architecture.

It is shown that an appropriate implementation of these components greatly improves the speed of evolution – stable straight line walking is typically achieved in substantially less than 100 generations. Moreover, compared to earlier experiments, the quality of the solutions arrived at is more satisfying with respect to their resemblance to human body dynamics during walking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] Mitchell, M. (1996) An Introduction to Genetic Algorithms, MIT Press.

    Google Scholar 

  2. [2] Schaffer, J., Whitley, D., and Eschelman, L. (1992) Combinations of genetic algorithms and neural networks: A survey of the state of the art. In Whitley, D. and Schaffer, J. (eds.), Combinations of Genetic Algorithms and Neural Networks. IEEE Computer Society Press.

    Google Scholar 

  3. [3] Reeve, R. (1999) Generating walking behaviours in legged robots, PhD Thesis, University of Edinburgh.

    Google Scholar 

  4. [4] Ijspeert, A., Hallam, J., Willshaw, D., (1998) From Lampreys to Salamanders: Evolving Neural Controllers for Swimming and Walking, From Animals to Animats, Proceedings of the Fifth International Conferenc of The Society for Adaptive Behaviour (SAB98), Prifer, R. et al. (eds.), pp 390–399, MIT Press.

    Google Scholar 

  5. [5] Reil, T. Unpublished.

    Google Scholar 

  6. Brookes, R. A., (1989) A robot that walks: emergent behaviours from a carefully evolved network, Neural Computation 1: 253–262.

    Article  Google Scholar 

  7. [7] Jakobi, N. (1998) Running Across the Reality Gap: Octopod Locomotion Evolved in a Minimal Simulation, in Husbands, P., Meyer, J. (eds.), Lecture Notes in Computer Science - Evolutionary Robotics, pp. 39–58, Springer Verlag.

    Google Scholar 

  8. Bachmann, R.J., Nelson, G.M., Flannigan, W.C., Quinn, R.D., Watson, J.T., Tryba, A.K., Ritzmann, R.E., (1997) Construction of a cockroach-like hexapod robot, Proceedings of the Eleventh VPI & SU Symposium on Structural Dynamics and Control: 1997 May 12–14, Blacksburg, Virginia: Virginia Polytechnic Institute and State University: 647–654.

    Google Scholar 

  9. Gallagher, J., Beer, R., Espenschiel, K., Quinn, R., (1996) Application of evolved locomotion controllers to a hexapod robot, Robotics and Autonomous Systems 19: 95–103.

    Article  Google Scholar 

  10. [10] Reil, T. (1999) Artificial Evolution of Neural Controllers In a Real-time Physics Environment, MSc Thesis, University of Sussex.

    Google Scholar 

  11. [11] Reil, T., Husbands, P. (2001) Evolution of Central Pattern Generators for Bipedal walking in a Real-time Physics Environment, IEEE Transactions on Evolutionary Computation, under review.

    Google Scholar 

  12. [12] Ogo, K., Ganse, A., Kato, L., (1980) Dynamic walking of biped walking machine aiming at completion of steady walking. Third symposium on Theory and Practice of Robots and Manipulators, Elsevier Scientific Publishing.

    Google Scholar 

  13. [13] Kato, T., Takanishi, A., Jishikawa, H., Kato, I., (1983) The realization of the quasi-dynamic walking by the biped walking machine. Fourth Symposium on Theory and Practice of Robots and Manipulators, Polish Scientific Publishers.

    Google Scholar 

  14. [14] Takanishi, A., Tochizawa, M., Karaki, H., Kato, I., (1989) Dynamic biped walking stabilized with optimal trunk and waist motion, IEEE/RSJ International Workshop on Intelligent Robots and Systems ’89, pp. 187–192.

    Google Scholar 

  15. Miura, H., Shimoyama, I. (1984) Dynamic Walk of a Biped, International Journal of Robotics Research 3: 30–74.

    Google Scholar 

  16. Furusho, J., Sano, A. (1990) Sensor-based Control of a Nine-link Biped, International Journal of Robotics Research, 9(2): 83–98.

    Article  Google Scholar 

  17. [17] Honda P3 Humanoid Robot, http://wrorld.Honda.com/robot/.

    Google Scholar 

  18. Millder, W.T., (1994) Real-time neural network control of a biped walking robot. IEEE Control Systems 14: 41–48.

    Article  Google Scholar 

  19. [19] Berns, K. (2000), The Walking Machine Catalogue, http://www.fzi.de/divisions/ipt/WMC/preface/preface.html

    Google Scholar 

  20. Pratt, J. (2000), Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots. Ph.D. Thesis, Computer Science Department, Massachusetts Institute of Technology, Cambridge, Massachusetts.

    Google Scholar 

  21. [PRATT_VM] Pratt, J., Dilworth, P., Pratt, G (1997), Virtual Mode Control of a ipedal Walking Robot, Proceedings of the IEEE International Conference on  obotics and Automation (ICRA ’97), Albuquerque, NM.

    Google Scholar 

  22. Rendel, M. (2001) Undegraduate Project Thesis, Biological Sciences, University of Oxford, Oxford.

    Google Scholar 

  23. [22] http://www.mathengine.com

    Google Scholar 

  24. [23] Hillis, W. D. (1992) Co-evolving parasites improves simulated evolution as an optimization procedure. In C. Langton et al. (eds.) Artificial Life II, Addison-Wesley, pp. 313–324.

    Google Scholar 

  25. McGeer, T. (1990) Passive walking with knees, Proceedings of the IEEE Conference on Robotics and Automation 2: 1640–1645.

    Article  Google Scholar 

  26. Garcia, M., A. Chatterjee and A. Ruina (1998) The simplest walking model: stability, complexity and scaling, J. Biomech. Engng. 120: 281–288.

    Article  Google Scholar 

  27. [26] Adolfsson, J., Dankowicz, and A. Nordmark (1998) 3-d stable gait in passive bipedal mechanisms, Proceedings of 357 Euromech, 1998.

    Google Scholar 

  28. [27] Garcia, M., Ruina, A., Coleman, M. and A. Chatterjee (1996) Passive-dynamic Models of Human Gait, Engineering Foundation Conference on Biomechanics and Neural Control of Human Movement, Mt. Sterling, Ohio, June 1–6.

    Google Scholar 

  29. [28] Pratt, J. E., Pratt, G. A. (1999) Exploiting Natural Dynamics in the Control of a 3D Bipedal Walking Simulation, International Conference on Climbing and Walking Robots (CLAWAR99), Portsmouth, UK, September 1999.

    Google Scholar 

  30. Duysens, F., Clarac, F., Cruse, H. (2000) Load-Regulating Mechanisms in Gait and Posture: Comparative Aspects, Physiological Reviews 80(1): 83–133.

    Google Scholar 

  31. Dietz, V. (1996) Interaction Between Central Programs and Afferent Input in the Control of Posture and Locomotion, Journal of Biomechanics 29(7): 841–844.

    Article  MathSciNet  Google Scholar 

  32. Zehr, E.P., Stein, R.B. (1999) What Functions Do Reflexes Serve During Locomotion? Progress in Neurobiology 58: 185–205.

    Article  Google Scholar 

  33. Liddell, E. G. T., and Sherrington C. (1924) Reflexes in response to stretch (myotatic reflexes), Proceedings of the Royal Society, London [Biol.] 96: 212–242.

    Article  Google Scholar 

  34. [33] Kandel, E. R., Schwartz, J. H., Jessell, T. M., (1991) Principles of Neural Science (3rd edition), Elsevier.

    Google Scholar 

  35. Lloyd, D.P.C. (1946) Integrative pattern of excitation an inhibition in two-neuron reflex arcs, Journal of Neurophysiology 9: 439–444.

    Google Scholar 

  36. Grillner, S. (1985) Neurobiological bases on rhythmic motor acts in vertebrates, Science 228: 143–149.

    Article  Google Scholar 

  37. Bussel, B., Roby-Brami, A., Remi Neris, I., and Yakovleff, A. (1996) Evidence for a spinal stepping generator in man, Paraplegia 34: 91–92.

    Article  Google Scholar 

  38. Golubitsky, M., Stewart, I., Buono, P.-L., and Collins, J.J. (1999) Symmetry in locomotor central pattern generators and animal gaits, Nature 401: 693–695.

    Article  Google Scholar 

  39. Taga, G. (1995) A Model of the Neuro-muscolo-skeletal System for Human Locomotion, II. Real-time adaptability under various constraints, Biological Cybernetics 73: 113–121.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this paper

Cite this paper

Reil, T., Massey, C. (2003). Facilitating Controller Evolution in Morpho-functional Machines — A Bipedal Case Study. In: Hara, F., Pfeifer, R. (eds) Morpho-functional Machines: The New Species. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67869-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67869-4_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68006-2

  • Online ISBN: 978-4-431-67869-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics