Advertisement

Limb Replantation in the Rat

  • Akio Minami
  • Norimasa Iwasaki

Abstract

Replantation of amputated parts of the body by microvascular techniques has become a fairly common clinical procedure. To improve the success rate of this procedure, a considerable number of basic studies have been performed using experimental models of various animals [1–4].The rat hind limb amputation and replantation model has been especially widely used because rats are inexpensive and easy to handle, and because the diameter of their femoral vessels approximates that of the human finger and of various subcutaneous island flaps.

Keywords

Femoral Nerve Microvascular Anastomosis Amputate Part Island Skin Flap Microvascular Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buncke H.J., Schulz W.P. (1976) Experimental digital amputation and reimplantation. Plast Reconstr Surg 36:62Google Scholar
  2. 2.
    Buncke H.J., Schulz W.P. (1966) Total ear reimplantation in the rabbit utilizing microminiature vascular anastomoses. Br J Plast Surg 19:15–22PubMedCrossRefGoogle Scholar
  3. 3.
    Hayhurst J.W. (1976) Complications of digital implantation. In: Daniller A.I., Strauch B. (eds) Symposium in microvascular surgery. CV, Mosby, St. LouisGoogle Scholar
  4. 4.
    Tsai T.M. (1975) Experimental and clinical application of microvascular surgery.Ann Surg 181:169–177CrossRefGoogle Scholar
  5. 5.
    Buncke H.J., Daniller A.I., Schulz W.P., Chase R.A. (1967) The fate of autogenous whole joints transplantated by microvascular anastomoses. Plast Reconstr Surg 39:333–341PubMedCrossRefGoogle Scholar
  6. 6.
    Harashima T., Buncke H.J. (1975) Study of washout solutions for microvascular replantation and transplantation. Plast Reconstr Surg 56:542–548CrossRefGoogle Scholar
  7. 7.
    Shapiro R.I., Cerra F.B. (1977) A model for reimplantation and transplantation of a complex organ: The rat hind limb. J Surg Res 24:501–506CrossRefGoogle Scholar
  8. 8.
    Abramson D.L., Shaw W.W., Kamat B.R., Harper A., Rosenberg C.R. (1991) Laser-assisted venous anastomosis: A comparison study. J Reconstr Microsurg 7:199–203PubMedCrossRefGoogle Scholar
  9. 9.
    Bass L.S., Treat M.R., Dzakonski C., Trokel S.L. (1989) Sutureless microvascular anastomosis using the THC:YAG laser: A preliminary report. Microsurgery 10:189–193PubMedCrossRefGoogle Scholar
  10. 10.
    Han S.K., Kim S.W., Kim W.K. (1998) Microvascular anastomosis with minimal suture and fibrin glue: Experimental and clinical study. Microsurgery 18:306–311PubMedCrossRefGoogle Scholar
  11. 11.
    Hyland W.T., Botens S.R., Minasi J.S. (1981) Are-appraisal and modification of the Lauritzen technique of microvascular anastomoses. Br J Plast Surg 34:451–453PubMedCrossRefGoogle Scholar
  12. 12.
    Kiyoshige Y., Tsuchida H., Hamasaki M., Takayanagi M., Watanabe Y. (1991) CO2 laser assisted microvascular anastomosis: Biochemical studies and clinical applications. J Reconstr Microsurg 7:225–230PubMedCrossRefGoogle Scholar
  13. 13.
    Lauritzen C. (1978) A new and easier way to anastomose microvessels. Scand J Plast Reconstr Surg 12:291–294PubMedCrossRefGoogle Scholar
  14. 14.
    Ruiz-Razura A., Lan M., Cohen B.E. (1989) The laser assisted end to side microvascular anastomosis. Plast Reconstr Surg 83:511–517PubMedCrossRefGoogle Scholar
  15. 15.
    Ruiz-Razura A., Wiener T.C. (1991) CO2 laser assisted microvascular anastomosis: Biochemical studies and clinical applications. Invited discussion. J Reconstr Microsurg 7:231–264Google Scholar
  16. 16.
    Sully L., Nightingale G., O’Brien B.Mc.C., Hurley J.V. (1982)The sleeve technique in microarterial anastomosis. Br J Plast Surg 34:451–453Google Scholar
  17. 17.
    Swartz W.M., Cha C.J.M., Ambler M., Clowes G.H.A. (1976) Prolonged ischemia in the replanted rat eg: A biochemical and morphologic study with microvascular techniques. Surg Forum 27:565–568PubMedGoogle Scholar
  18. 18.
    Vale B.H., Frenkel A., Trenka-Benthin S., Matlaga B.F. (1986) Microsurgical anastomosis of rat carotid arteries with the CO2laser. Plast Reconstr Surg 77:759–766PubMedCrossRefGoogle Scholar
  19. 19.
    Chait L.A., May J.W., O’Brien B.M., Hurley J.V. (1978) The effects of perfusion of various solutions on the no-reflow phenomenon in experimental free flaps. Plast Reconstr Surg 61:421–430PubMedCrossRefGoogle Scholar
  20. 20.
    Gould I.S., Sully L., O’Brien B.M., Das S.F., Knight K.R., Hurley J.V. (1985) The effects of combined cooling and perfusion on experimental free-flap survival in rabbits. Plast Reconstr Surg 76:104–109PubMedCrossRefGoogle Scholar
  21. 21.
    Rosen H.M., Slivjak M.J., McBrearty F.X. (1985)Preischemic flap washout and its effect on the no-reflow phenomenon. Plast Reconstr Surg 76:737–747PubMedGoogle Scholar
  22. 22.
    Rosen H.M., Slivjak M.J., McBrearty F.X. (1987) Delayed micro circulatory hyperpermeability following perfusion washout. Preischemic flap washout. Plast Reconstr Surg 79:102–107PubMedCrossRefGoogle Scholar
  23. 23.
    Rosen H.M., Slivjak M.J., McBrearty F.X. (1987) The role of perfusion washout in limb revascularization procedures. Plast Reconstr Surg 80:595–603PubMedCrossRefGoogle Scholar
  24. 24.
    Im M.J., Shen W.H., Pak O. (1984) Effect of allopurinol on survival of hyperemic island skin flaps. Plast Reconstr Surg 73:276–278PubMedCrossRefGoogle Scholar
  25. 25.
    Manson P.N., Narayan K.K., Im M.J. (1986) Improved survival in free skin flap transfers in rats. Surgery 99:211–215PubMedGoogle Scholar
  26. 26.
    Sagi A., Ferder M., Levens D., Strauch B. (1986) Improved survival of island flaps after prolonged ischemia by perfusion with superoxide dismutase. Plast Reconstr Surg 77:639–644PubMedCrossRefGoogle Scholar
  27. 27.
    Weiss A.P.C., Moore J.R., Randolph M.A., Weiland A.J. (1988) Preventing oxygen free-radical injury in ischemic revascularized bone grafts. Plast Reconstr Surg 82:486–497PubMedCrossRefGoogle Scholar
  28. 28.
    Weiss A.P.C., Carey L.A., Randolph M.A., Moore J.R., Weiland A.J. (1989) Oxygen radical scavengers improve vascular patency and bone-muscle cell survival in an ischemic extremity replant model. Plast Reconstr Surg 84:117–123PubMedCrossRefGoogle Scholar
  29. 29.
    Yokoyama K., Homan M., Takagishi K., Sekiguchi M., Yamamoto M., Nakamura K. (1993) The effect of superoxide production on the replantation of rat limbs after cold ischemia. J Reconstr Microsurg 9:61–68PubMedCrossRefGoogle Scholar
  30. 30.
    Yokoyama K., Homan M., Takagishi K., Sekiguchi M., Yamamoto M. (1992) Protective effects of coenzyme Q10 on ischemia-induced reperfusion injury in ischemic limb models. Plast Reconstr Surg 90:890–898PubMedCrossRefGoogle Scholar
  31. 31.
    Whitney T.M., Wang K.K., Sternbach Y., Chaklis-Haley D. (1997) Reduction of ischemic reperfusion edema with corticotropin-releasing factor (CRF) in rat hind limb replantation. Ann Plast Surg 38:416–419PubMedCrossRefGoogle Scholar
  32. 32.
    Kihira M., Miura T., Ishiguro N. (1991) Preservation of skeletal muscle in tissue transfers using rat hind limbs. Plast Reconstr Surg 88:275–284PubMedCrossRefGoogle Scholar
  33. 33.
    Norden M.A., Rao V.K., Southard J.H. (1997) Improved preservation of rat hind limbs with the University of Wisconsin solution and butanedione monoxine. Plast Reconstr Surg 100:957-965Google Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Akio Minami
  • Norimasa Iwasaki

There are no affiliations available

Personalised recommendations