Advertisement

Essential Laboratory Techniques

  • Akihiro Fukui

Abstract

Microangiography is an essential method of evaluating blood circulation in several tissues. Blood circulation in the bone or skin is frequently evaluated in the fields of orthopedic and plastic surgery. The following procedure of aortography is used to evaluate blood circulation in animal tissues.

Keywords

Bone Graft Human Leukocyte Antigen Skin Flap Laser Doppler Flowmetry Fibular Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whitten M.B. (1928) A review of the technical methods of demonstrating the circulation of the heart. A modification of the celluloid and corrosion technic. Arch Int Med 42:846–864Google Scholar
  2. 2.
    Narat J.K., Loef J.A., Narat M. (1936) On the preparation of multicolored corrosion specimens. Anat Rec 64:155–160Google Scholar
  3. 3.
    Sempuku T., Tamai S., Mizumoto S., Yajima H. (1993) Vascularized tail bone grafts in rats. Plast Reconstr Surg 91:502–510PubMedGoogle Scholar
  4. 4.
    Batson O.V. (1935) A new material for corrosion preparations. Science 81:519–520PubMedGoogle Scholar
  5. 5.
    Batson O.V. (1939) Latex emulsions in human vascular preparations. Science 90:518–520PubMedGoogle Scholar
  6. 6.
    Batson O.V. (1955) Corrosion specimens prepared with a new material. Anat Rec 121:425Google Scholar
  7. 7.
    Lametschwandtner A., Lametschwandtner U., Weiger T. (1990) Scanning electron microscopy of vascular corrosion casts-technique and applications: update review. Scanning Microsc 4:889–941PubMedGoogle Scholar
  8. 8.
    Burger P.C., Chandler D.B., Gordon K. (1984) Scanning electron microscopy of vascular casts. J Elect Microsc Tech 1:341–348Google Scholar
  9. 1.
    Hirsch C., Spalteholz W. (1907) Coronararterien und Herzmuskel. Anatomische und experimentelle Untersuchungen. Deutsche Med Wchnschr 1:790–795Google Scholar
  10. 2.
    Gross L. (1921) The blood supply to the heart in its anatomical and clinical aspects. Paul B Hoeber, New York, pp 1–10Google Scholar
  11. 3.
    Wolfe K. (1956) Plastic-embedded hearts-Cleared and corroded specimens. AMA Arch Pathol 61:153–158PubMedGoogle Scholar
  12. 4.
    Sempuku T., Tamai S., Mizumoto S., Yajima H. (1993) Vascularized tail bone grafts in rats. Plast Reconstr Surg 91:502–510PubMedGoogle Scholar
  13. 5.
    Scapinelli R. (1997) Vascular anatomy of the human cruciate ligaments and surrounding structures. Clin Anat 10:151–162PubMedGoogle Scholar
  14. 6.
    Caffesse R.G., Castelli W.A., Nasjleti C.E. (1981) Vascular response to modified Widman flap surgery in monkeys. J Periodontol 52:1–7Google Scholar
  15. 7.
    Spalteholz W. (1924) Die Arterien der Herzwand. Anatomische Untersuchungen an Menschen-und Tierherzen. S Hirzel, Leipzig, pp 13–18Google Scholar
  16. 1.
    Milch R.A., Rall D.P., Tobie J.E. (1957) Bone localization of the tetracyclines. J Natl Cancer Inst 19:87–93PubMedGoogle Scholar
  17. 2.
    Milch R.A., Rall D.P., Tobie J.E. (1958) Fluorescence of tetracycline antibiotics in bone. J Bone Joint Surg 40A:897–910Google Scholar
  18. 3.
    Ibsen K.H., Urist M.R. (1964) The biochemistry and the physiology of the tetracyclines: with special reference to mineralized tissues. Clin Orthop 32:143–169PubMedGoogle Scholar
  19. 4.
    Frost H.M., Villanueva A.R., Roth H. (1960) Tetracycline staining of newly forming bone and mineralizing cartilage in vivo. Stain Technol 35:135–138PubMedGoogle Scholar
  20. 5.
    Frost H.M., Villanueva A.R., Roth H. (1960) Measurement of bone formation in a 57 year old man by means of tetracyclines. Henry Ford Hosp Med Bull 8:238–254Google Scholar
  21. 6.
    Tapp E. (1966) Tetracycline labelling methods of measuring the growth of bones in the rat. J Bone Joint Surg 48B:517–525Google Scholar
  22. 7.
    Raman A. (1969) Appositional growth rate in rat bones using the tetracycline labelling method.Acta Orthop Scand 40:193–197PubMedGoogle Scholar
  23. 8.
    Frost H.M. (1969) Tetracycline-based histological analysis of bone remodeling. Calc Tiss Res 3:211-237Google Scholar
  24. 9.
    Villanueva A.R. (1974) A bone stain for osteoid seams in fresh, unembedded, mineralized bone. Stain Technol 49:1–8sPubMedGoogle Scholar
  25. 10.
    Mathews C.H.E., Mehr I. (1979) Staining and processing bone specimens for simultaneous tetracycline-osteoid seam assessment and histomorphometric quantitative analysis. J Histotechnol 2:23–24Google Scholar
  26. 11.
    Konno T., Takahashi H. (1983) Preparation of undecalcified bone sections. In: Takahashi H. (ed) Handbook of bone morphometry. Nishimura, Niigata, Japan, pp 28–33Google Scholar
  27. 12.
    Villanueva A.R. (1983) Preparation and staining of mineralized sections of bone. In: Takahashi H. (ed) Handbook of bone morphometry. Nishimura, Niigata, Japan, pp 45–55Google Scholar
  28. 13.
    Jee W.S.S., Inoue J., Jee K.W., Haba T. (1983) Histomorphometric assay of the growing long bone. In: Takahashi H. (ed) Handbook of bone morphometry. Nishimura, Niigata, Japan, pp 101–124Google Scholar
  29. 14.
    Ohgushi H., Okumura M. (1990) Osteogenic capacity of rat and human marrow cells in porous ceramics: experiments in athymic (nude) mice. Acta Orthop Scand 61:431–434PubMedGoogle Scholar
  30. 15.
    Okumura M., Ohgushi H., Tamai S. (1991) Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 12:411–416PubMedGoogle Scholar
  31. 16.
    Okumura M., Ohgushi H., Tamai S., Shors E.C. (1991) Primary bone formation in porous hydroxyapatite ceramic: a light and scanning electron microscopie study. Cells Mater 1:29–34Google Scholar
  32. 17.
    Okumura M, van Blitterswijk C.A., Koerten H.K., Ohgushi H., Tamai S. (1990) Experimental study of vascularized hydroxyapatite implants combined with rat bone marrow cells: a preliminary report. In: Hulbert J.E., Hulbert S.F. (eds) Bioceramics. Vol 3. Rose-Hulman Institute of Technology, Terre Haute, IN, pp 309–317Google Scholar
  33. 18.
    Okumura M., Ohgushi H., Takakura Y., van Blitterswijk C.A., Koerten H.K. (1992) Analysis of primary bone formation in porous alumina: a fluorescence and scanning electron microscopic study of marrow cell induced osteogenesis. Biomed Mater Eng 2:191–201PubMedGoogle Scholar
  34. 19.
    Sempuku T., Ohgushi H., Okumura M., Tamai S. (1996) Osteogenic potential of allogeneic rat marrow cells in porous hydroxyapatite ceramics: a histological study. J Orthop Res 14:907–913PubMedGoogle Scholar
  35. 1.
    Minami A., Vsui M., Ogino T., Minami M. (1986) Simultaneous reconstruction of bone and skin defects by free fibular graft with a skin flap. Microsurgery 7:38–45PubMedGoogle Scholar
  36. 2.
    Minami A., Ogino T., Sakuma T., Vsui M. (1987) Free vascularized fibular grafts in the treatment of congenital pseudarthrosis of the tibia. Microsurgery 8:111–116PubMedGoogle Scholar
  37. 3.
    Kaneda K., Kurakami C., Minami A. (1988) Free vascularized fibular graft in the treatment of kyphosis. Spine 13:1273–1277PubMedGoogle Scholar
  38. 4.
    Minami A., Kaneda K., Itoga H., Vsui M. (1989) Free vascularized fibular grafts. J Reconstr Microsurg 5:37–43PubMedGoogle Scholar
  39. 5.
    Minami A., Ogino T., Itoga H. (1989) Vascularized iliac osteocutaneous flap based on the deep circumflex iliac vessels-Experience of 13 cases. Microsurgery 10:99–102PubMedGoogle Scholar
  40. 6.
    Minami A., Itoga H., Suzuki K. (1990) Reverse-flow vascularized fibular graft: A new method. Microsurgery 11:278–281PubMedGoogle Scholar
  41. 7.
    Minami A., Kaneda K., Itoga H. (1992) Treatment of infected segmental defect of long bone with vascularized bone transfer. J Reconstr Microsurg 8:75–82PubMedGoogle Scholar
  42. 8.
    Minami A., Kimura T., Matsumoto O., Suzuki K. (1993) Fracture through united vascularized bone grafts. J Reconstr Microsurg 9:227–232PubMedGoogle Scholar
  43. 9.
    Minami A., Kutsumi K., Takeda N., Kaneda K. (1995) Vascularized fibular graft for bone reconstruction of the extremities after tumor resection in limb-saving procedures. Microsurgery 16:56–64PubMedGoogle Scholar
  44. 10.
    Minami A., Kaneda K., Satoh S., Abumi K., Kutsumi K. (1997) Free vascularized fibular strut graft for anterior spinal fusion. J Bone Joint Surg 79B:43–47Google Scholar
  45. 11.
    Kasashima T., Minami A., Kutsumi K. (1998) Late fracture of vascularized fibular grafts. Microsurgery 18:337–343PubMedGoogle Scholar
  46. 12.
    Yoshimura M., Shimamura K., Iwai Y., Yamauchi S., Veno T. (1983) Free vascularized fibular transplant. A new method for monitoring circulation of the grafted fibula. J Bone Joint Surg 65A:1295–1301Google Scholar
  47. 13.
    Lau R.S.F., Leung P.C. (1982) Bone graft viability in vascularized bone graft transfer. Br J Radiol 55:325–329PubMedGoogle Scholar
  48. 14.
    Lisbona R., Rennie W.R.J., Daniel R.K. (1980) Radionuclide evaluation of free vascularized bone graft viability. Am J Radiol 134:387–388Google Scholar
  49. 15.
    Frame J.W., Edmondson H.D., O’Kane M.M. (1983) A radio isotope study of the healing of mandibular bone grafts in patients. Br J Oral Surg 21:277–289Google Scholar
  50. 16.
    Zimberg E.M., Wood M.B., Brown M.L. (1985) Vascularized bone transfer: Evaluation of viability by postoperative bone scan. J Reconstr Microsurg 2:13–19Google Scholar
  51. 17.
    Breggren A., Weiland A.J., Ostrup L.T. (1982) Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-vascularized periosteal grafts. J Bone Joint Surg 64A:799–809Google Scholar
  52. 18.
    Itoh K., Minami A., Sakuma T., Furudate M. (1989) The use of three-phase bone imaging in vascularized fibular and iliac bone grafts. Clin Nucl Med 14:494–500PubMedGoogle Scholar
  53. 19.
    Subtanian G., McAfee J.G. (1971) A new complex for 99m Tc for skeletal imaging. Radiology 99:192–196Google Scholar
  54. 20.
    Nutton R.W., Fitzgerald R.H., Kelly P.J. (1985) Early detection bone-imaging as an indicator of osseous blood flowand factors affecting the uptake of 99m-Tc hydroxy methylene diphosphonate in healing bone. J Bone Joint Surg 67A:763–770Google Scholar
  55. 21.
    Lalonde D.H., Williams H.B., Rosenthall L., Viloria J.B. (1984) Circulation, bone scans, and tetracycline labeling in microvascular and vascular bundle implanted rib grafts. Ann Plast Surg 5:366–374Google Scholar
  56. 1.
    Woldarski K.H., Reddi A.H. (1986) Alkaline phosphatase as a marker of osteo inductive cells. Calcif Tissue Int 39:382–385Google Scholar
  57. 2.
    Yoshikawa T., Ohgushi H., Okumura M., Tamai S., Dohi Y., Moriyama T. (1992) Biochemical and histological sequences of membranous ossification in ectopic site. Calcif Tissue Int 50:184–188PubMedGoogle Scholar
  58. 3.
    Price P.A., Parthemore J.G., Detos L.J. (1980) New biochemical marker for bone metabolism. J Clin Invest 66:878–883PubMedGoogle Scholar
  59. 4.
    Price P.A., Lothringer J.W., Baukol S.A., Reddi A.H. (1981) Developmental appearance of the vitamin K-dependent protein of bone during decalcification: Analysis of mineralizing tissues in human. J Biol Chem 256:3781–3784PubMedGoogle Scholar
  60. 5.
    Ohgushi H., Dohi Y., Tamai S., Tabata S. (1993) Osteogenic differentiation of marrow stromal stem cells in porous hydroxyapatite ceramics. J Biomed Mat Res 27:1401–1407Google Scholar
  61. 6.
    Reddi A.H., Sullivan N.S. (1980) Matrix-induced endochondral bone differentiation: Influence of hypophysectomy, growth hormone, and thyroid-stimulating hormone. Endocrinology 107:1291–1299PubMedGoogle Scholar
  62. 7.
    Dohi Y., Ohgushi H., Tabata S., Yoshikawa T., Dohi K., Moriyama T. (1992) Osteogenesis associated with bone Gla protein gene expression in diffusion chambers by bone marrow cells with demineralized bone matrix. J Bone Min Res 7:1173–1180Google Scholar
  63. 8.
    Akahane M., Ohgushi H., Yoshikawa T., Sempuku T., Tamai S., Tabata S., Dohi Y. (1999) Osteogenic phenotype expression of allogenic rat marrow cells in porous hydroxyapatite ceramics J Bone Min Res 14:561–568Google Scholar
  64. 9.
    Ohgushi H., Okumura M., Yoshikawa T., Tamai S., Tabata S., Dohi Y. (1992) Regulation of bone development andthe relationship to bioactivity: Osteoblastic phenotype expression of marrow stromal stem cells on the surface of bioactive materials. In: Ducheyne P., Kokubo T., Van Blitterswijk C.A. (eds) Bone-bonding biomaterials. Reed Healthcare Communications Publishers, Leiderdorp, The Netherlands, pp 47–56Google Scholar
  65. 10.
    Watson J.D., Gilman M., Witkowski J., Zoller M. (1992) Recombinant DNA. In: Scientific American Books, W.H. Freeman and Company, New YorkGoogle Scholar
  66. 11.
    Ishida H., Tamai S., Yajima H., Inoue K., Ohgushi H., Dohi Y. (1996) Histologic and biochemical analysis of osteogenic capacity of vascularized periosteum. Plastic Reconst Surg 97:512–518Google Scholar
  67. 12.
    Ohgushi H., Goldberg V.M., Caplan A.I. (1989) Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 7:568–578PubMedGoogle Scholar
  68. 13.
    Okumura M., Ohgushi H., Tamai S. (1991) Bonding osteogenesis in coralline hydroxyapatite combined with bone marrow cells. Biomaterials 12:411–416PubMedGoogle Scholar
  69. 14.
    Ohgushi H., Okumura M., Tamai S., Shors E.C. (1990) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: A comparative histomorphometric study of ectopic bone formation. J Biomed Mat Res 24:1563–1570Google Scholar
  70. 15.
    Sempuku T., Ohgushi H., Okumura M., Tamai S. (1996) Osteogenic potential of allogeneic rat marrow cells in porous hydroxyapatite ceramics: A histological study. J Orthop Res 14:907–913PubMedGoogle Scholar
  71. 16.
    Inoue K., Ohgushi H., Yoshikawa T., Sempuku T., Tamai S., Dohi Y. (1997) The effect of aging on bone formation in porous hydroxyapatite. Biochemical and histological analysis. J Bone Min Res 12:989–994Google Scholar
  72. 17.
    Inoue K., Ohgushi H., Toshikawa T., Okumura M., Tamai S., Dohi Y. (1992) Osteogenic activity of marrow/hydroxyapatite composite (Quantitative analysis of bone formation). In: Yamamuro T., Kokubo T., Nakamura T. (eds) Bioceramics. Vol. 5. Kobunshi Kankokai, Kyoto, Japan, pp 125–130Google Scholar
  73. 18.
    Ohgushi H., Okumura M. (1990) Osteogenic capacity of rat and human marrow cells in porous ceramics. Experiments in athymic (nude) mice. Acta Orthop Scand 61:431–434PubMedGoogle Scholar
  74. 19.
    Yoshikawa T., Ohgushi H., Uemura T., Nakajima H., Ichijima K., Tamai S., Tateisi T. (1998) Human marrow cells-derived cultured bone in porous ceramics. Biomed Mater Eng 8:311–320PubMedGoogle Scholar
  75. 1.
    Rudolph A.M., Heymann M.A. (1967) The circulation of the fetus in utero. Circ Res 21:163–184PubMedGoogle Scholar
  76. 2.
    Axelsson A., Angelborg C., Larsen H.C. (1983) The microsphere surface technique for evaluation of cochlear vessels and circulation. A preliminary report. Acta Otolaryngolica 95:297–305Google Scholar
  77. 3.
    Angelborg C., Slepecky N., Larsen H.C., Soderberg L. (1987) Colored micro spheres for blood flow determinations twice in the same animal. Hear Res 27:265–269PubMedGoogle Scholar
  78. 4.
    Hamaji M., Miyata M., Kawashima Y. (1985) A study of the vascular arrangement in the rat adrenal gland using nonradioactive micro spheres. Cell Tissue Res 240:277–280PubMedGoogle Scholar
  79. 5.
    Shell W., Kligerman M., Chang A-L., See J.I., Meerbaum S., Corday E. (1985) Measurement of myocardial blood flow with nonradioactive microspheres (abstract). Circulation 72 (Suppl 11, IIIJ):III–191Google Scholar
  80. 6.
    Hale S.L., Alker K.J., Kloner A.A. (1988) Evaluation of nonradioactive colored microspheres for measurement of regional myocardial blood flow in dogs. Circulation 78:42–34Google Scholar
  81. 7.
    Pang C.Y., Neligan P., Nakatsuka T. (1984) Assessment of microsphere technique for measurement of capillary blood flow in random skin flaps in pigs. Plast Reconstr Surg 74:513–521PubMedGoogle Scholar
  82. 8.
    Neutze J.M., Wyler F., Rudolph A.M. (1968) Use of radioactive microspheres to assess distribution of cardiac output in rabbits. Am J Physiol 215:486–495Google Scholar
  83. 9.
    Batrum R.J., Berkowitz D.M., Hollenberg N.K. (1974) A simple radioactive microsphere method for measuring regional blood flow and cardiac output. Invest Radiol 9:126–132Google Scholar
  84. 10.
    Heyman M.A., Payne B.D., Hoffman H.E., Rudolph A.M. (1977) Blood flow measurements with radionuclidelabeled particles. Prog Caridiovasc Dis 20:55–79Google Scholar
  85. 11.
    Daniel R.K., Williams H.B. (1973) The free transfer of skin flaps by microvascular anastomosis: an experimental study and a reappraisal. Part 1: vascular supply of the skin. Plast Reconstr Surg 52:16–31PubMedGoogle Scholar
  86. 12.
    Wagner H.N., Rhodes B.A., Sasaki Y., Ryan J.P. (1969) Studies of the circulation with radioactive microspheres. Inves Radiol 4:374–386Google Scholar
  87. 13.
    Buckberg G.D., Luck J.C., Payne D.B., Hoffman H.E., Archie J.P., Fixler D.E. (1971) Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol 31:598–604PubMedGoogle Scholar
  88. 14.
    Sasaki Y., Wargner H.N. (1971) Measurement of the distribution of cardiac output in unanesthetized rats. J Appl Physiol 30:879–884PubMedGoogle Scholar
  89. 15.
    Archie J.P., Fixler D.E., Ullyot D.J., Hoffman H.E., Utlev J.R., Carlson E.L. (1973) Measurement of cardiac output with end organ trapping of radioactive microspheres. J Appl Physiol 35:148–154PubMedGoogle Scholar
  90. 16.
    Pang C.Y., Forrest C.R., Neligan P.C., Lindsay W.K. (1986) Augmentation of blood flow in delayed random skin flaps in the pig: effect of length of delay period and angiogenesis. Plast Reconstr Surg 78:68–74PubMedGoogle Scholar
  91. 17.
    Pang C.Y., Neligan P.C., Forrest C.R., Nakatsuka T., Sasaki G.H. (1986) Hemodynamics and vascular sensitivity to circulating norepinephrine in normal skin and delayed and acute random skin flaps in the pig. Plast Reconstr Surg 78:75–8475-84Google Scholar
  92. 18.
    Kreidstein M.L., Levine R.H., Knowlton R.J., Pang C.Y. (1995) Serial fluorometric assessments of skin perfusion in isolated perfused human skin flaps. Br J Plast Surg 48:288–293PubMedGoogle Scholar
  93. 19.
    Rival R., Bance M., Antonyshyn O., Phillips J., Pang C.Y. (1995) Comparison of laser flow meter and radioactive microspheres in measuring blood flow in pig skin flaps. Laryngoscope 105:383–386PubMedGoogle Scholar
  94. 20.
    Chiodo A.A., Gur E., Pang C.Y., Neigan P.C., Boyd B., Binhammer P.M., Forrest C.F. (2000) The vascularized pig fibula bone flap: effect of segmental osteotomies and internal fixation on blood flow. Plast Reconstr Surg 105:1004–1012PubMedGoogle Scholar
  95. 21.
    Inada Y., Tamai S., Mizumoto S., Ono H., Kawanishi K., Fukui A. (1993) Nonradioactive coloured microsphere measurement of regional blood flow for axial pattern flaps in rabbits. Br J Plast Surg 46:127–131PubMedGoogle Scholar
  96. 22.
    Tsuchida Y., Aoki N., Fukuda O., Nakano M., Igarashi H. (1998) Changes in hemodynamics in jejunal flaps of rabbits due to ischemia, venous congestion, and reperfusion measured by means of colored microspheres. Plast Reconstr Surg 101:147–154PubMedGoogle Scholar
  97. 23.
    Hynes W, McGregor A.G. (1949) The use of fluorescein in estimating the blood flow in pedicled skin flaps and tubes. Br J Plast Surg 2:4–12PubMedGoogle Scholar
  98. 24.
    Myers M.B. (1962) Prediction of skin sloughs at the time of operation with use of fluorescein dye. Surgery 51:158–162PubMedGoogle Scholar
  99. 25.
    Thorvaldsson S.E., Grabb W.C. (1974) The intravenous fluorescein test as a measure of skin flap viability. Plast Reconstr Surg 53:576–578PubMedGoogle Scholar
  100. 26.
    McCraw J.B., Myers B., Shanklin K.D. (1977) The value of fluorescein in predicting the viability of arterialized flaps. Plast Reconstr Surg 60:710–719PubMedGoogle Scholar
  101. 27.
    Slinger R., Lewis C.M., Franklin J.D., Lynch J.B. (1978) Fluorescein test for prediction of flap viability during breast reconstructions. Plast Reconstr Surg 61:371–375Google Scholar
  102. 28.
    Daniel R.K., Kerrigan C.L. (1982) The omnipotential pig buttock flap. Plast Reconstr Surg 70:11–15PubMedGoogle Scholar
  103. 29.
    Kerrigan C.L., Daniel R.K. (1983) Monitoring acute skin flap failure. Plast Reconstr Surg 71:519–524PubMedGoogle Scholar
  104. 30.
    Pang C.Y., Neligan P.C., Nakatsuka T., Sakai G.H. (1986) Assessment of the fluorescein dye test for prediction of skin flap viability in pigs. J Surg Res 46:173–181Google Scholar
  105. 31.
    Silverman D.G., La Rossa D.D., Barlow C.H., Bering T.G., Popky L.M., Smith T.C. (1980) Quantification of tissue fluorescein delivery and prediction of flap viability with the fiberoptic dermofluorometer. Plast Reconstr Surg 66:545–553PubMedGoogle Scholar
  106. 32.
    Kreidstein M.L., Levine R.H., Knowlton R.J., Pang C.Y. (1995) Serial fluorometric assessment of skin perfusion inisolated perfused human skin flaps. Br J Plast Surg 48:288–293PubMedGoogle Scholar
  107. 33.
    Kety S.S., Schmidt C.F. (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143:53–66Google Scholar
  108. 34.
    Aukland K., Bower B.F., Berliner R.W. (1964) Measurement of local blood flow with hydrogen gas. Circ Res 14:164–184PubMedGoogle Scholar
  109. 35.
    Fieschi C., Bozzao L., Agnoli A., Nardini M., Bartolini A. (1969) The hydrogen method of measuring local blood flow in subcortical structures of the brain. Exp Brain Res 7:111–119PubMedGoogle Scholar
  110. 36.
    Neely W.A., Turner M.D., Hardy J.A., Godfrey W.D. (1965) The use of the hydrogen electrode. J Surg Res 5:363–369PubMedGoogle Scholar
  111. 37.
    Thomson J.G., Kerrigan C. (1991) Hydrogen clearance: assessment of technique for measurement of skin flap blood flow in pigs. Plast Reconstr Surg 88:657–663PubMedGoogle Scholar
  112. 38.
    Young W.(1980) H2 Clearance measurement of blood flow: a review of technique and polarographic principles. Stroke 11:552–564PubMedGoogle Scholar
  113. 39.
    Rival R., Bance M., Antonyshyn O., Phillips J., Pang C.Y. (1995) Comparison of laser Doppler flow meter andradioactive microspheres in measuring blood flow in pig skin flaps. Laryngoscope 105:383–386PubMedGoogle Scholar
  114. 40.
    Eichhorn W., Auer T., Yoy E.D., Hoffmann K. (1994) Laser Doppler imaging of axial and random pattern flaps in the maxillo-facial area. A preliminary report. J Craniomaxillofacial Surg 21:25–29Google Scholar
  115. 41.
    Bornmyr S., Arner M., Svensson H. (1994) Laser Doppler imaging of finger skin blood flow in patents after microvascular repair of the ulnar artery at the wrist. J Hand Surg 19B:295–300Google Scholar
  116. 42.
    Stucker M., Auer T., Hoffmann P. (1995) Spacial pattern of cutaneous perfusion in wound healing. In: HL Wound healing and skin physiology. Springer, Berlin Heidelberg, pp 127–136Google Scholar
  117. 43.
    Koman L.A., Ruch D.S., Aldridge M., Smith B.P., Holden M.B., Salem W., Fulcher M. (1998) Arterial reconstruction in the ischemic hand and wrist: effects on microvascular physiology and health-related quality of life. J Hand Surg 23A:773–782Google Scholar
  118. 44.
    Duling B.R. (1973) The preparation and use of the hamster cheek pouch for studies of a microcirculation. Microvasc Res 5:423–429PubMedGoogle Scholar
  119. 45.
    Zarem H.A., Soderberg R. (1982) Tissue reaction to ischemia in the rabbit ear chamber: effects of prednisolone on inflammation and microvascular flow. Plast Reconstr Surg 70:667–674PubMedGoogle Scholar
  120. 46.
    Eriksson E., Reploge R.L., Glagov S. (1987) Reperfusion of skeletal muscle after warm ischemia. Ann Plast Surg 18:224–228PubMedGoogle Scholar
  121. 47.
    Gore R.W., Baldwin A.L. (1986) Intestinal and mesenteric preparations for microvascular studies. In: Baker C.H., Nastuk W.L. (eds) Microcirculatory technology. Academic, Orlando FLGoogle Scholar
  122. 48.
    Grant R.T. (1964) Direct observations of skeletal muscle blood vessels (rat cremaster). J Physiol 172:123–137PubMedGoogle Scholar
  123. 49.
    Grant R.T. (1966) The effects of denervation on skeletal muscle blood vessels (rat cremaster). J Anat 100:305–316PubMedGoogle Scholar
  124. 50.
    Baez S. (1973) An open cremaster muscle preparationfor the study of blood vessels by in vivo microscopy. Microvasc Res 5:384–394PubMedGoogle Scholar
  125. 51.
    Acland R.D., Anderson G., Siemionow M., Steven M. (1989) Direct in vivo observations of embolic events in the microcirculationdistal to a small-vesssel anastomosis. Plast Reconstr Surg 84:280–288PubMedGoogle Scholar
  126. 52.
    Barker J.H., Acland R.D., Anderson G.L., Patel J. (1992) Microcirculatory disturbances following the passage of emboli in an experimental free-flap model. Plast Reconstr Surg 95:95–102Google Scholar
  127. 1.
    Millesi H., Meissl G., Berger A. (1972) The interfascicular nerve grafting of the median and ulnar nerves. J Bone Joint Surg (Am) 54:727–750Google Scholar
  128. 2.
    Millesi H. (1979) Microsurgery of peripheral nerves. World J Surg 3:67–79PubMedGoogle Scholar
  129. 3.
    Sunderland S. (1945) The intraneural topography of the radial, median and ulnar nerves. Brain 68:243–299PubMedGoogle Scholar
  130. 4.
    Sunderland S. (1953) Funicular suture and funicular exclusion in the repair of severed nerves. B J Surg 40:580–587Google Scholar
  131. 5.
    Hakstian R.W. (1968) Funicular orientation by direct stimulation. J Bone Joint Surg (Am) 50:1178–1186PubMedGoogle Scholar
  132. 6.
    Karnovsky M.J., Roots L. (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221PubMedGoogle Scholar
  133. 7.
    Riley D.A., Lang D.H. (1984) Carbonic anhydrase activity of human peripheral nerves: possible histochemical aid to nerve repair. J Hand Surg 9A:112–120Google Scholar
  134. 8.
    Gruber H., Freilinger G., Holle J., Mandl H. (1976) Identification of motor and sensory funiculi in cat nerves and their selective reunion. Br J Plast Surg 29:70–73PubMedGoogle Scholar
  135. 9.
    Fonnum F. (1966) A radiochemical method for the estimation of choline acety/transferase. Biochem J 100:479–484PubMedGoogle Scholar
  136. 10.
    Engel J., Ganel A., Melamed S., Rimon, Farine I. (1980) Choline acety/transferase for differentiation between human motor and sensory nerve fibers. Ann Plast Surg 4:376–380PubMedGoogle Scholar
  137. 11.
    Ganel A., Farine I., Aharonson Z., Horoszowski H., Melamed R., Rimon S. (1982) Intraoperative nerve fascicleidentification using choline acety/transferase. A preliminary report. Clin Orthop 165:228–232PubMedGoogle Scholar
  138. 12.
    Yunshao H., Shizhen Z. (1988) Acetylcholinesterase:a histochemical identification of motor and sensory fascicles in human peripheral nerve and its use during operat ion. Plast Reconstr Surg 82:125–130Google Scholar
  139. 13.
    Szabolcs M.J., Gruber H., Schaden G.E., Freilinger G., Deutinger M., Girsch W., Happak W. (1991) Selective fascicular nerve repair: a rapid method for intraoperative motorsensory differentiation by acetylcholinesterase histochemistry. Eur J Plast Surg 14:21–25Google Scholar
  140. 14.
    Landi A., Copeland S.A., Wynn P.C.B., Jones S.J. (1980) The role of somatosensory evoked potentials and nerve conduction studies in the surgical management of brachial plexus injuries. J Bone Joint Surg (Br) 62:492–496Google Scholar
  141. 15.
    Van Beek A., Hubble B., Kinkead L., Torro S., Suchy H.(1983) Clinical use of nerve stimulation and recording techniques. Plast Reconstr Surg 71:225–240PubMedGoogle Scholar
  142. 16.
    Sugioka H., Tsuyama N., Hara T., Nagano A., Tachibana S., Ochiai N. (1982) Investigation of brachial plexus injuries by intraoperative cortical somatosensory evoked potentials. Arch Orthop Traumat Surg 99:143–151Google Scholar
  143. 17.
    Hebb C.O., Waites G.M.H. (1956) Choline acetylase in antero-and retro-grade degeneration of a cholinergic nerve. J Physiol 132:667–671PubMedGoogle Scholar
  144. 18.
    Jablecki C., Brimijoin S. (1975) Axoplasmic transport of choline-acety/transferase activity in mice: effect of age and neurotomy. J Neurochem 25:583–593PubMedGoogle Scholar
  145. 19.
    White H.L., Wu J.C. (1973) Kinetics of choline acety/transferases (EC2.3.1.6) from human and other mammalian central and peripheral nervous tissues. J Neurochem 20:297–307PubMedGoogle Scholar
  146. 20.
    Fonnum F. (1975) A rapid radiochemical method for the determination of choline acety/transferase. J Neurochem 24:407–409PubMedGoogle Scholar
  147. 21.
    Ohgushi H., Tamai S., Masuda S., Masuhara K. (1983) Choline acety/transferase activity in the differentiation between motor and sensory funiculi in peripheral nerve (in Japanese). Seikeigeka 34:2034–2039Google Scholar
  148. 22.
    Yajima H., Kawanishi K., Ohgushi H., Tamai S. (1995) Experimental study on choline acety/transferase activity measurement for brachial plexus injury. Microsurgery 16:679–683PubMedGoogle Scholar
  149. 1.
    Jabaly M.E., Wallance W.H., Heckler F.R. (1980) Internal topography of major nerves of the forearm and hand: a current view. J Hand Surg 5:1–18Google Scholar
  150. 2.
    Chow J.A., van Beek A.L., Meyer D.L., Johnson M.C. (1985) Surgical significance of the motor fascicular group of the ulnar nerve in the forearm. J Hand Surg 10A:867–872Google Scholar
  151. 3.
    Sunderland S. (1945) The intraneural topography of the radial, median, and ulnar nerves. Brain 68:243–299PubMedGoogle Scholar
  152. 4.
    Hakstian R.W. (1968) Funicular orientation by direct stimulation. An aid to peripheral nerve repair. J Bone Joint Surg 50:1178–1186PubMedGoogle Scholar
  153. 5.
    Gaul J. (1986) Electrical fascicle identification as an adjunct to nerve repair. Hand Clin 2:709–722PubMedGoogle Scholar
  154. 6.
    Karnovsky M.J., Roots L. (1964) A “direct-coloring” thiocholine method for choline esterase. J Histochem Cytochem 12:219–221PubMedGoogle Scholar
  155. 7.
    Grüber H. (1976) Identification of motor and sensory funiculi in cut nerves and their selective reunion. Br J Plast Surg 29:70–73PubMedGoogle Scholar
  156. 8.
    Sumita J., Tajima T. (1979) Distribution of motor fiber of human median nerve by Karnovsky staining. Seikeigeka 30:1427–1429 (in Japanese)Google Scholar
  157. 9.
    He Y., Zhong S. (1988) Acetylcholinesterase: a histochemical identification of motor and sensory fascicles in human peripheral nerve and its use during operation. Plast Reconstr Surg 82:125–130PubMedGoogle Scholar
  158. 10.
    Kanaya F., Ogden L., Breidenbach W.C., Tsai T-M., Schcker L. (1991) Sensory and motor fiber differentiation with Karnovsky staining. J Hand Surg 16A:851–858Google Scholar
  159. 11.
    Kanaya F., Jevans A.W. (1992) Rapid histochemical identification of motor and sensory fascicles: preparation of solution. Plast Reconstr Surg 90:514–515PubMedGoogle Scholar
  160. 1.
    Hickey M.J., Hurley J.V., Angel M.F., O’Brien B.M. (1992) The response of the rabbit rectus femoris muscle to ischemia and reperfusion. J Surg Res 53:369–377PubMedGoogle Scholar
  161. 2.
    Fukui A., Tamai S. (1994) Present status of replantation in Japan. Microsurgery 15:842–847PubMedGoogle Scholar
  162. 3.
    Harashina T. (1988) Analysis of 200 free flaps. Br J Plast Surg 41:33–36PubMedGoogle Scholar
  163. 4.
    Lidman D., Daniel R.K. (1981) Evaluation of clinical microvascular anastomoses: reasons for failure. Ann Plast Surg 6:215–223PubMedGoogle Scholar
  164. 5.
    Dubernard J.M., Owen E., Herzberg G., Lanzetta M., Martin X., Kapila M., Hakim N.S. (1999) Human hand allograft: report on first 6 months. Lancet 353:1315–1320PubMedGoogle Scholar
  165. 6.
    Francel T.J., Vander Kolk C.A., Yaremchuk M.J. (1992) Locally applied hypothermia and microvascular muscle flap. Ann Plast Surg 28:246–251PubMedGoogle Scholar
  166. 7.
    Fantone J.C., Ward P.A. (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:397–418Google Scholar
  167. 8.
    Allen F.M. (1938) Resistance of peripheral tissues to asphyxia at various temperatures. Surg Gynecol Obstet 67:746–751Google Scholar
  168. 9.
    Muramatsu I., Takahata N., Usui M., Ishii S. (1985) Metabolic and histologic changes in the ischemic muscles of replanted dog legs. Clin Orthop 196:292–299PubMedGoogle Scholar
  169. 10.
    Van Alphen W.A., Smith A.R., ten Kate F.J.W. (1988) Maximum hypothermic ischemia in replants containing muscular tissue. J Hand Surg 13A:427–434Google Scholar
  170. 11.
    Francel T.J., Vander Kolk C.A., Yaremchuk M.J. (1992) Locally applied hypothermia and microvascular muscle flap transfers. Ann Plast Surg 28:246–251PubMedGoogle Scholar
  171. 12.
    Kihara M., Miura T., Ishiguro N. (1991) Preservation of skeletal muscle in tissue transfers using rat hindlimbs. Plast Reconstr Surg 88:275–284Google Scholar
  172. 13.
    Yokoyama K., Homan M., Takkagishi K., Yamamoto M. (1992) Protective effects of coenzyme 010 on ischemiainduced reperfusion injury in ischemic limb models. Plast Reconstr Surg 90:890–898PubMedGoogle Scholar
  173. 14.
    Tamai S. (1978) Analysis of 163 replantations in an 11 year period. Clin Plast Surg 5:195–202PubMedGoogle Scholar
  174. 15.
    Van Giesen P.J., Seaber A.V., Urbaniak J.R. (1983) Storage of amputated parts prior to replantation-an experimental study with rabbit ears. J Hand Surg 8:60–65Google Scholar
  175. 16.
    Weiss A.C., Carey L.A., Randolph M.A., Moore J.R., Weiland A.J. (1989) Oxygen radical scavengers improve vascular patency and bone-muscle cell survival in an ischemic extremity replant model. Plast Reconstr Surg 84:117–123PubMedGoogle Scholar
  176. 17.
    Nakagawa Y., Ono H., Mizumoto S., Fukui A., Tamai S. (1998) Subzero nonfreezing preservation in a murine limb replantation model. J Orthop Sci 3:156–162PubMedGoogle Scholar
  177. 18.
    Ono H., Nakagawa Y., Mizumoto S., Tomita N., Tamai S. (1995) Evaluation of vascular compliance and vasoconstrictive reactions in amputated hindlimbs of rats. J Orthop Res 13:375–381PubMedGoogle Scholar
  178. 19.
    Ono H., Nakagawa Y., Mizumoto S., Tamai. S (1997) Vascular compliance and vasoconstrictive reactions in rat hindlimbs: comparison between storage temperatures of-1°C and 4°C. J Reconstr Microsurg 13:409–414PubMedGoogle Scholar
  179. 20.
    Zavos P.M., Graham E.F. (1981) Preservation of turkeyspermatozoa by the use of emulsions and supercooling methods. Cryobiology 18:497–505PubMedGoogle Scholar
  180. 21.
    Ohyama Y., Asahina E. (1972) Supercooling injury in the egg cell of the sea urchin. Cryobiology 9:22–28PubMedGoogle Scholar
  181. 22.
    Kurnick N.B., Nokay N., Hampton B. (1967) Survival of frozen stored human and mouse bone marrow cells. Radiat Res 32:706–722PubMedGoogle Scholar
  182. 23.
    Hirase Y., Kojima T., Uchida M., Takeishi M. (1992) Cryopreserved allogeneic vessel and nerve grafts: hind-limb replantation model in the rat. J Reconstr Microsurg 8:437–443PubMedGoogle Scholar
  183. 24.
    Bowers W.D. Jr, Hubbard R.W., Daum R.C., Ashbaugh P., Nilson E. (1973) Ultrastructural studies of muscle cells and vascular endothelium immediately after freeze-thaw injury. Cryobiology 10:9–21PubMedGoogle Scholar
  184. 25.
    Kreyberg L. (1950) La stase et son role dans le development de la necrose. Acta Pathol Microbiol Scand Suppl 91:40–50Google Scholar
  185. 26.
    Weatherly-White R.C.A., Sjostrom B., Paton B.C. (1964) Experimental studies in cold injury. II. The pathogenesis of frostbite. J Surg Res 4:17–22Google Scholar
  186. 27.
    Rosen H.M., Slivjak M.J., McBrearty F.X. (1985) Preischemic flap washout and its effect on the no reflow phenomenon. Plast Reconstr Surg 76:737–747PubMedGoogle Scholar
  187. 28.
    Gordon L., Levinsohn D.G., Borowsky C.D., Manojlovic R.D., Sessler D.I., Weiner M.W., Baker A.J. (1992) Improved preservation of skeletal muscle in amputated limbs using pulsatile hypothermic perfusion with University of Wisconsin solution. J Bone Joint Surg 74A:1358–1366Google Scholar
  188. 29.
    Wang W.Z., Anderson G., Firrell J.C., Tsai T.M. (1998) Ischemic preconditioning versus intermittent reperfusion to improve blood flow to a vascular isolated skeletal muscle flap of rats. J Trauma 45:953–959PubMedGoogle Scholar
  189. 30.
    Xiaolu L., Cooley B.C., Fowler J.D., Gould J.S. (1995) Intravascular heparin protects muscle flaps from ischemia/reperfusion injury. Microsurgery 16:90–93Google Scholar
  190. 31.
    Goldberg J.A., Pederson W.C., Barwick W.J. (1989) Salvage of free tissue transfers using thrombolytic agents. J Reconstr Microsurg 5:351–356PubMedGoogle Scholar
  191. 32.
    Feng L.T. (1988) Vasoactive prostaglandins in the impending no-reflow state: evidence for a primary disturbance in microvascular tone. Plast Reconstr Surg 81:755–764PubMedGoogle Scholar
  192. 33.
    Douglas B., Weiberg H. (1987) Beneficial effects of ibuprofen on experimental microvascular free flaps: pharmacologic alteration of the no-reflow phenomenon. Plast Reconstr Surg 79:366–371PubMedGoogle Scholar
  193. 34.
    Nakagawa Y., Ono H., Mizumoto S., Fukui A., Tamai S. (1994) Effect of a calcium antagonist on the vascular resistance of preserved murine hind limbs. Jpn J Reconstr Microsurg 7:155–162Google Scholar
  194. 1.
    Dubernard J-M., Qwen E., Herzberg G., Lanzetta M., Martin X., Kapila H., Dawahra M., Hakim N.S. (1999) Human hand allograft: Report on first 6 months. Lancet 353:1315–1320PubMedGoogle Scholar
  195. 2.
    Cooney W.P., Hentz V.R. (2002) Hand transplantation — Primum non nocere. J Hand Surg 27A:165–168Google Scholar
  196. 3.
    Fung J.J., Allessiani M., Abu-Elmagd K., Todo S., Shapiro R., Tzakis A., vanThiel D., Armitage J., Jain A., McCauley J. (1991) Adverse effects associated with the use of FK506. Transplant Proc 23:3105–3108PubMedGoogle Scholar
  197. 4.
    Penn I (1994) The problem of cancer in organ transplant recipients: An overview. Transplant Sci 4:23–32PubMedGoogle Scholar
  198. 5.
    Hutchinson I. (1996) Transplantation and rejection. In: Immunology, 4th edn. Mosby, London, 26.21–26.12Google Scholar
  199. 6.
    Long E.O. (1989) Intracellular traffic and antigen processing. Immunol Today 10:232–234PubMedGoogle Scholar
  200. 7.
    Marrack P., McCormack J., Kappler J. (1989) Presentation of antigen, foreign major histocompatibility complex protein and self by thymus cortical epithelium. Nature 338:503–505PubMedGoogle Scholar
  201. 8.
    Bjorkman P.J., Saper M.A., Samraoui B., Bennett W.S., Strominger J.L., Wiley D.C. (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518PubMedGoogle Scholar
  202. 9.
    Brown J.H., Jardetzky T., Saper M.A., Samraoui B., Bjorkman P.J., Wiley D.C. (1988) A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 332:845–850PubMedGoogle Scholar
  203. 10.
    Trowsdale J., Ragoussis J., Campbell R.D. (1991) Map of the human MHC. Immunol Today 12:443–446PubMedGoogle Scholar
  204. 11.
    Davis M.M., Bjorkman P.J. (1988) T cell antigen receptor genes and T cell antigen. Nature 334:395–402PubMedGoogle Scholar
  205. 12.
    Ramsdell F., Fowlkes B.J. (1990) Clonal deletion versus clonal anergy: Role of the thymus in inducing self tolerance. Science 248:1342–1348PubMedGoogle Scholar
  206. 13.
    Neefjes J.J., Ploegh H.L. (1992) Intracellular transport of MHC class II molecules. Immunol Today 13:179–184PubMedGoogle Scholar
  207. 14.
    Malnati M.S., Marti M., LaVaute T., Jaraquemada D., Biddison W., DeMars R., Long E.O. (1992) Processing pathways for presentation of cytosolic antigen to MHC class II restricted T cells. Nature 357:702–704PubMedGoogle Scholar
  208. 15.
    Willebrand E.V., Salmela K., Isoniemi H., Krogerus L., Taskinen E., Häyry P. (1992) Induction of HLA class II antigen and interleukin 2 receptor expression in acute vascular rejection of human kidney allografts. Transplantation 53:1077–1081Google Scholar
  209. 16.
    Ford H.R., Hoffman R.A., Tweardy D.J., Kispert P., Wang S., Simmons R.L. (1991) Evidence that production of interleukin 6 within the rejecting allo-graft coincides with cytotoxic T lymphocyte development. Transplantation 51:656–661PubMedGoogle Scholar
  210. 17.
    Martinez O.M., Krams S.M., Sterneck M., Villanueva J.C., Falco D.A., Ferrell L.D., Lake J., Roberts J.P., Ascher N.L. (1992) Intragraft cytokine profile during human liver allograft rejection. Transplantation 53:449–456PubMedGoogle Scholar
  211. 18.
    Kirk A.D., Ibrahim M.A., Bollinger R.R., Dawson D.V., Finn O.J. (1992) Renal allo-graft infiltrating lymphocytes. A prospective analysis of in vitro growth characteristics and clinical relevance. Transplantation 53:329–338PubMedGoogle Scholar
  212. 19.
    Abbas A.K., Lichtman A.H., Pober J.S. (1994) Immune responses to tissue transplants. In: Cellular and molecular immunology, 2nd edn. W.E. Saunders, Philadelphia, pp 339–354Google Scholar
  213. 20.
    Santamaria P., Boyce-Jacino M.T., Lindstrom A.L., Barbosa J.J., Faras A.J., Rich S.S. (1992) HLA class II “typing”: direct sequencing of DRB, DQB, and DQA genes. Hum Immunol 33:69–81PubMedGoogle Scholar
  214. 21.
    Chan G.L., Gruber S.A., Skjei K.L., Canafax D.M. (1990) Principles of immunosuppression. Crit Care Clin 6:841–892PubMedGoogle Scholar
  215. 22.
    Caine R.Y., Collier D.S.J., Lim S., Pollard S.G., Samaan A., White D.J.G., Thiru S. (1989) Rapamycin for immunosuppression in organ allografting. Lancet 2:227Google Scholar
  216. 23.
    Kino T., Hatanaka H., Miyata S., Inamura N., Nishiyama M., Yajima T., Goto T., Okuhara M., Kohsaka M., Aoki H. (1987) FK506,a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot 40:1256–1265PubMedGoogle Scholar
  217. 24.
    Tocci M.J., Matkovich D.A., Collier K.A. Kwok P., Dumont F., Degudicibus S.L.S., Siekierka J.J., Chin J., Hutchinson N.I. (1989)The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. J Immunol 143:718–726PubMedGoogle Scholar
  218. 25.
    Dumont F.J., Staruch M.J., Koprak S.L., Melino M.R., Sigal N.H. (1990) Distinct mechanism of suppression of murine T cell activation by the related macrolides FK506 and rapamycin. J Immunol 144:251–258PubMedGoogle Scholar
  219. 26.
    Cramer D.V., Chapman F.A., Jaffee B.D., Jones E.A., Knoop M., Hreha-Eiras G., Makowka L. (1992)The effect of a new immunosuppressive drug, brequinar sodium, on heart, liver, and kidney allograft rejection in the rat. Transplantation 53:303–308PubMedGoogle Scholar
  220. 27.
    van den Helder T.B., Benhaim P., Anthony J.P., McCalmont T.H., Mathes S.J. (1994) Efficacy of RS-61443 in reversing acute rejection in a rat model of hindlimb allotransplantation. Transplantation 57:427–433PubMedGoogle Scholar
  221. 28.
    Ochiai T., Gunji Y., Nagata M., Asano T., Isono K. (1991) Effective and safe use of FK506: Combination treatment with rapamycin or RS-61443in experimental organ transplantation. Transplant Proc 23:2718–2719PubMedGoogle Scholar
  222. 29.
    D’Alessandro A.M., Pirsch J.D., Stratta R.J., Sollinger H.W., Kalayoglu M., Maki D.G., Belzer F.O. (1989) OKT3 salvage therapy in a quadruple immunosuppressive protocol in cadaveric renal transplantation. Transplantation 47:297–300PubMedGoogle Scholar
  223. 30.
    Deierhoi M.H., Barber W.H., Curtis J.J., Julian B.A., Luke R.G., Hudson S., Barger B.O., Diethelm A.G. (1988)A comparison of OKT3 monoclonal antibody and corticosteroids in treatment of acute renal allograft rejection. Am J Kidney Dis 11:86–89PubMedGoogle Scholar
  224. 31.
    Cantarovich D., Le-Mauff B., Hourmant M., Giral M., Denis M. Him M., Jacques Y., Soulillou J.P. (1989)Anti-interleukin 2 receptor monoclonal antibody in the treatment of ongoing acute rejection episodes of human kidney graft — a pilot study. Transplantation 47:454–457PubMedGoogle Scholar
  225. 32.
    Kupiec-Weglinski J.W., Diamanstein T., Tilney N.L. (1988) Interleukin 2 receptor-targeted therapy-rationale andapplications in organ transplantation. Transplantation 46:785–792PubMedGoogle Scholar
  226. 33.
    Soulillou J.P., Peyrounet P., Mauff B.L., Hourmant M., Olive D., Mawas C., Delaage M., Him M., Jacques Y. (1987) Prevention of rejection of kidney transplants by monoclonal antibody directed against interleukin 2. Lancet 1:1339–1342PubMedGoogle Scholar
  227. 34.
    Cosimi A.B., Conti D., Delmonico F.L., Preffer F.I., Wee S-L., Rothlein R., Faanes R., Colvin R.B. (1990) In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts. J Immunol 144:4604–4612PubMedGoogle Scholar
  228. 35.
    Isobe M., Yagita H., Okumura K., Ihara A. (1992) Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 255:1125–1127PubMedGoogle Scholar
  229. 36.
    Nakao Y., Mackinnon S.E., Strasberg S.R., Hertl M.C., Isobe M., Susskind B.M., Mohanakumar T., Hunter D.A. (1995) Immunosuppressive effect of monoclonal antibodies to ICAM-1 and LFA-1 on peripheral nerve allograft in mice. Microsurgery 16:612–620PubMedGoogle Scholar
  230. 37.
    Fujiwara H., Qian J-H., Satoh S., Kokudo S., Ikegami R., Hamaoka T. (1986) Studies on the induction of toleranceto alloantigens. The generation of serum factor able to transfer alloantigen-specific tolerance for delayed-type hypersensitivity by portal venous inoculation with allogeneic cells. J Immunol 136:2763–2768PubMedGoogle Scholar
  231. 38.
    Haisa M., Sakagami K., Matsumoto T., Kawamura T., Uchida S., Fujiwara T., Shiozaki S., Inagaki M., Orita K. (1989) Donor-specific transfusion (DST) with intermittent administration of azathioprine induces suppressor T cells and MLR-inhibiting factors without sensitization. Transplant Proc 21:1814–1817PubMedGoogle Scholar
  232. 39.
    Kawamura T., Sakagami K., Haisa M., Morisaki F., Takasu S. (1989) Induction of antiidiotypic antibodies by donorspecific blood transfusions: Establishment of a humanmouse hybridoma secreting the MLR-inhibiting factor. Transplantation 48:459–463PubMedGoogle Scholar
  233. 40.
    Salvatierra O.J., Vincenti F., Amend W., Potter D., Iwaki Y., Opelz G., Terasaki P., Duca R., Cochrum K., Hanes D., Stoney R.J., Feduska N.J. (1980) Deliberate donor-specific blood transplantations prior to living related renal transplantation. A new approach. Ann Surg 192:543–552PubMedGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Akihiro Fukui

There are no affiliations available

Personalised recommendations