Skip to main content

Learning from Bacteria: Molecular Chaperones in Ribosomes and Thermophilic Adaptation

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain
  • 512 Accesses

Summary

In this chapter, we review two topics, protein biosynthesis and thermophilic adaptation. Protein biosynthesis is of central importance for all living systems. The process of polypeptide translation and the subsequent modifications leading to the final three-dimensional protein structure are highly complex biochemical reactions that involve many components. Even in normal growth conditions, some heat-shock proteins (HSPs) bind to ribosomes and the ribosomebound nascent chain to prevent misfolding and aggregation of nascent chains. Under heat stress, the amounts of these HSPs are increased and other HSPs are newly induced and bind to the ribosomes. In addition to HSPs, constitutive components of ribosomes have chaperone activity and may contribute to ribosome assembly and biosynthesis and folding of nascent chains. It has become clear that the biosphere contains a variety of microorganisms that can live and grow in extreme environments. Thermophilic microorganisms proliferate at temperatures of more than 60°C (for hyperthermophilic microorganisms, more than 80°C). To grow at extreme conditions microorganisms require adaptive mechanisms. The results of current studies on these microorganisms provide information about the unique properties of molecular factors that impart stability to thermostable biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223–320

    Article  PubMed  CAS  Google Scholar 

  2. Jaenicke R (1991) Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 30: 3147–3161

    Article  PubMed  CAS  Google Scholar 

  3. Ellis J (1987) Proteins as molecular chaperones [news]. Nature (Lond) 328: 378–379

    Article  CAS  Google Scholar 

  4. Rothman JE (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59: 591–601

    Article  PubMed  CAS  Google Scholar 

  5. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366

    Article  PubMed  CAS  Google Scholar 

  6. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature (Lond) 355: 33–45

    Article  CAS  Google Scholar 

  7. Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9: 601–634

    Article  PubMed  CAS  Google Scholar 

  8. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature (Lond) 381: 571–580

    Article  CAS  Google Scholar 

  9. Johnson JL, Craig EA (1997) Protein folding in vivo: unraveling complex pathways. Cell 90: 201–204

    Article  PubMed  CAS  Google Scholar 

  10. Zhong T, Arndt KT (1993) The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73: 1175–1186

    Article  PubMed  CAS  Google Scholar 

  11. Nelson RJ, Ziegelhoffer T, Nicolet C, et al (1992) The translation machinery and 70 kD heat shock protein cooperate in protein synthesis. Cell 71: 97–105

    Article  PubMed  CAS  Google Scholar 

  12. Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of HSP70 with newly synthesized proteins: implications for protein folding and assembly. Science 248: 850–854

    Article  PubMed  CAS  Google Scholar 

  13. James P, Pfund C, Craig EA (1997) Functional specificity among hsp70 molecular chaperones. Science 275: 387–389

    Article  PubMed  CAS  Google Scholar 

  14. Pfund C, LopezHoyo N, Ziegolhoffer T, et al (1998) The molecular chaperone Ssb from Saccaromyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J 17: 3981–3989

    Article  PubMed  CAS  Google Scholar 

  15. Thulasiraman V, Yang CF, Frydman J (1999) In vivo newly translated popolypeptides are sequestered a protected folding environment. EMBO J 18: 85–95

    Article  PubMed  CAS  Google Scholar 

  16. Hendrick JP, Langer T, Davis TA, et al (1993) Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc Natl Acad Sci USA 90: 10216–10220

    Article  PubMed  CAS  Google Scholar 

  17. Gaitanaris GA, Vysokanov A, Hung SC, et al (1994) Successive action of Escherichia coli chaperones in vivo. Mol Microbiol 14: 861–869

    Article  PubMed  CAS  Google Scholar 

  18. Kudlicki W, Odom OW, Kramer G, et al (1995) The importance of the N-terminal segment for DnaJmediated folding while bound to ribosomes as peptidyltRNA. J Biol Chem 270: 10650–10657

    Article  PubMed  CAS  Google Scholar 

  19. Vysokanov AV, Gaitanaris GA, Vysokanov A, et al (1995) Synthesis of chloramphenicol acetyltransferase in a coupled transcription-translation in vitro system lacking the chaperones DnaK and DnaJ. FEBS Lett 375: 211–214

    Article  PubMed  CAS  Google Scholar 

  20. Vickery LE, Silberg JJ, Ta DT (1997) Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci 6: 1047–1056

    Article  PubMed  CAS  Google Scholar 

  21. Yoshimune K, Yoshimura T, Esaki N (1998) Hsc62, a new DnaK homologoue of Escherichia coli. Biochem Biophys Res Commun 250: 115–118

    Article  PubMed  CAS  Google Scholar 

  22. Hesterkamp T, Bukau B (1998) Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli. EMBO J 17: 4818–4828

    Article  PubMed  CAS  Google Scholar 

  23. Paek KH, Walker GC (1987) Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol 169: 283–290

    Google Scholar 

  24. Sell SM, Eisen C, Ang D, et al (1990) Isolation and characterization of dnaJ null mutants of Escherichia coli. J Bacteriol 172: 4827–4835

    PubMed  CAS  Google Scholar 

  25. Hesterkamp T, Hauser S, Lutcke H, et al (1996) Escherichia coli trigger factor is a prolyl isomerase that associates with nascent polypeptide chain. Proc Natl Acad Sci USA 93: 4437–4441

    Google Scholar 

  26. Gragerov A, Nudler E, Komissarova N, et al (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci USA 89: 10341–10344

    Article  PubMed  CAS  Google Scholar 

  27. Crooke E, Wickner W (1987) Trigger factor: a soluble protein that folds pro-OmpA into a membraneassembly-competent form. Proc Natl Acad Sci USA 84: 5216–5220

    Article  PubMed  CAS  Google Scholar 

  28. Lill R, Crooke E, Guthrie B, et al (1988) The “trigger factor cycle” includes ribosomes, presecretory proteins, and the plasma membrane. Cell 54: 1013–1018

    Article  PubMed  CAS  Google Scholar 

  29. Stoller G, Rucknagel KP, Nierhaus KH, et al (1995) A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J 14: 4939–4948

    PubMed  CAS  Google Scholar 

  30. Valent QA, Kendall DA, High S, et al (1995) Early events in preprotein recognition in E. coli: interaction of Srp and trigger factor with nascent polypeptides. EMBO J 14: 5494–5505

    PubMed  CAS  Google Scholar 

  31. Teter SA, Houry WA, Ang D, et al (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97: 755–765

    Google Scholar 

  32. Ewalt KL, Hendrick JP, Houry WA (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90: 491–500

    Article  PubMed  CAS  Google Scholar 

  33. Bylund G, Wipemo C, Lundberg LAC, et al (1998) RimM and RbfA are essential for efficient processing of 16S rRNA in Escherichia coli. J Bacteriol 180: 73–82

    PubMed  CAS  Google Scholar 

  34. Alix JH, Guérin MF (1993) Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc Natl Acad Sci USA 90: 9725–9729

    Article  PubMed  CAS  Google Scholar 

  35. Sbai M, Alix JH (1998) DnaK-dependent ribosome biogenesis in Escherichia coli: competition for dominance between the alleles dnaK756 and dnaK+. Mol Gen Genet 260: 199–206

    Article  PubMed  CAS  Google Scholar 

  36. Gaitanaris GA, Vysokanov A, Hung SC, et al (1994) Successive action of Escerichia coli chaperones in vivo. Mol Microbiol 14: 861–869

    Article  PubMed  CAS  Google Scholar 

  37. Vysokanov AV, Gaitanaris GA, Vysokanov A, et al (1995) Synthesis of chloramphenicol acetyltransferase in a coupled transcription-translation in vitro system lacking the chaperone DnaK and DnaJ. FEBS Lett 375: 211–214

    Article  PubMed  CAS  Google Scholar 

  38. Cate JH, Yusupov MM, Yusupova GZ, et al (1999) X-ray crystal structures of 70S ribosome functional complexes. Science 285: 2095–2104

    Article  PubMed  CAS  Google Scholar 

  39. Das B, Chattopadhyay S, Das Gupta C (1992) Reactivation of denatured fungal glucose 6-phosphate dehydrogenase and E. coli alkaline phosphatase with E. coli ribosome. Biochem Biophys Res Commun 183: 774–780

    Article  PubMed  CAS  Google Scholar 

  40. Chattopadhyay S, Das B, Bera AK, et al (1994) Refolding of denatured lactate dehydrogenase by Escherichia coli ribosomes. Biochem J 300: 717–720

    PubMed  CAS  Google Scholar 

  41. Chattopadhyay S, Das B, Dasgupta C (1996) Reactivation of denatured proteins by 23S ribosomal RNA: role of domain V. Proc Natl Acad Sci USA 93: 8284–8287

    Article  PubMed  CAS  Google Scholar 

  42. Noller HF (1991) Ribosomal RNA and translation. Annu Rev Biochem 60: 192–227

    Article  Google Scholar 

  43. Liljas A (1990) Some structural aspects of elongation. In: Hill WE, Dahlberg A, Roger A, et al (eds) The ribosome: structure, function, and evolution. American Society of Microbiology, Washington, DC, pp 309–317

    Google Scholar 

  44. Ehrenberg M, Rojas AM, Diaz I, et al (1990) New aspects of elongation factor Tu function in translation. In: Hill WE, Dahlberg A, Roger A, et al (eds) The ribosome: structure, function, and evolution. American Society of Microbiology, Washington, DC, pp 373–379

    Google Scholar 

  45. Kudlicki W, Coffman A, Kramer G, et al (1997) Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem 272: 32206–32210

    Google Scholar 

  46. Caldas TD, Yaagoubi AL, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273: 11478–11482

    Article  PubMed  CAS  Google Scholar 

  47. Richarme G (1998) Protein-disulfide isomerase activity of elongation factor EF-Tu. Biochem Biophys Res Commun 252: 156–161

    Article  PubMed  CAS  Google Scholar 

  48. Montesano-Roditis L, McWilliams R, Glitz DG, et al (1993) Replacement of dinitrophenyl-modified ribosomal proteins in totally reconstituted Escherichia coli 30S subunits. J Biol Chem 268: 18701–18709

    PubMed  CAS  Google Scholar 

  49. Olah TV, Perrault AR, Cooperman BS, et al (1993) Incorporation of dinitrophenyl derivatives of proteins S6, S13, S16, and S18 into the 30S subunit of Escherichia coli ribosomes by total reconstitution. J Biol Chem 268: 18696–18700

    PubMed  CAS  Google Scholar 

  50. Bycroft M, Hubbard TJP, Proctor M, et al (1997) The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88: 235–242

    Article  PubMed  CAS  Google Scholar 

  51. Stoldt M, Wöhnert J, Görlach M, et al (1998) The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases. EMBO J 17: 63776384

    Google Scholar 

  52. Newkirk K, Feng W, Jiang W, et al (1994) Solution structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci USA 91: 5114–5118

    Article  PubMed  CAS  Google Scholar 

  53. Schindelin H, Jiang W, Inouye M, et al (1994) Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 91: 51195123

    Google Scholar 

  54. Jalshree TN, Ramakrishnan V, White SW (1996) Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy. Biochemistry 35: 2845–2853

    Article  Google Scholar 

  55. Nakagawa A, Nakashima T, Taniguchi M, et al (1999) The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome. EMBO J 18: 1459–1467

    Article  PubMed  CAS  Google Scholar 

  56. Onesti S, Miller AD, Brick P (1995) The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure (Lond) 3: 163–176

    Article  CAS  Google Scholar 

  57. Mosyak L, Reshetnikova L, Goldgur Y, et al (1995) Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nat Struct Bio! 2: 537–547

    Article  CAS  Google Scholar 

  58. Murzin AG (1993) OB (oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12: 861–867

    CAS  Google Scholar 

  59. Goldstein J, Pollitt NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87: 283–287

    Article  PubMed  CAS  Google Scholar 

  60. Bochner BR, Lee PC, Wilson SW, et al (1984) AppppA and related adenylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37: 225–232

    Article  PubMed  CAS  Google Scholar 

  61. Johnstone DB, Farr SB (1991) AppppA binds to several proteins in Escherichia coli, including the heat-shock and oxidative stress proteins DnaK, GroEL, E89, C45 and C40. EMBO J 10: 3897–3904

    PubMed  CAS  Google Scholar 

  62. Bochner BR, Zylicz M, Georgopoulos C (1986) Escherichia coli DnaK protein possesses a 5’-nucleotidase activity that is inhibited by AppppA. J Bacteriol 168: 931–935

    Google Scholar 

  63. Fuge EK, Farr SB (1993) ApppA-binding protein E89 is the Escherichia coli heat-shock protein C1pB. J Bacteriol 175: 2321–2326

    PubMed  CAS  Google Scholar 

  64. Gryazonova 01, Davydova NL, Gongadze GM, et al (1996) A ribosomal protein from Thermus thermophilus is homologous to a general shock protein. Biochimie 78: 915–919

    Article  PubMed  Google Scholar 

  65. Rould MA, Perona J, Steitz TA (1991) Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature (Lond) 352: 213–218

    Article  CAS  Google Scholar 

  66. VanBogelen RA, Kelley PM, Neidhardt FC (1987) Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169: 26–32

    PubMed  CAS  Google Scholar 

  67. Bourgaize DB, Phillips TA, VanBogelen RA, et al (1990) Loss of 4.5S RNA induces the heat shock response and lambda prophage in Escherichia coli. J Bacteriol 172: 1151–1154

    PubMed  CAS  Google Scholar 

  68. VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87: 5589–5593

    Article  PubMed  CAS  Google Scholar 

  69. Yamagishi M, Matsushita H, Wada A, et al (1993) Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase-and growth rate-dependent control. EMBO J 12: 625–630

    PubMed  CAS  Google Scholar 

  70. Wada A, Igarashi K, Yoshimura S, et al (1995) Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli. Biochem Biophys Res Commun 214: 410–417

    Article  PubMed  CAS  Google Scholar 

  71. Dammel CS, Noller HF (1995) Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev 9: 626–637

    Google Scholar 

  72. Jones PG, Inouye M (1996) RbfA, a 30S ribosomal binding factors, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21: 1207–1218

    Article  PubMed  CAS  Google Scholar 

  73. Jones PG, Mitta M, Kim Y (1996) Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci USA 93: 76–80

    Article  PubMed  CAS  Google Scholar 

  74. Tantimavanich S, Nagai S, Nomaguchi H, et al (1993) Immunological properties of ribosomal proteins from Mycobacterium bovis BCG. Infect Immun 61: 4005–4007

    PubMed  CAS  Google Scholar 

  75. Tabira Y, Ohara N, Ohara N, et al (1998) The 16-kDa acrystalline-like protein of Mycobacterium bovis BCG is produced under conditions of oxygen deficiency and is associated with ribosomes. Res Microbiol 149: 255–264

    Article  PubMed  CAS  Google Scholar 

  76. Ohara N, Ohara N, Naito M, et al (1997) HrpA, a new ribosome-associated protein which appears in heat-stressed Mycobacterium bovis bacillus Calmette-Guérin. J Bacteriol 179: 6495–6498

    PubMed  CAS  Google Scholar 

  77. Yuan Y, Crane DD, Barry CE III (1996) Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial a-crystallin homolog. J Bacteriol 178: 4484–4492

    PubMed  CAS  Google Scholar 

  78. Madigan MT, Marrs BL (1997) Extremophiles. Sci Am 276: 82–87

    Article  CAS  Google Scholar 

  79. Stter KO (1998) Hyperthermophiles: isolation, classification, and properties. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley, New York, pp 1–24

    Google Scholar 

  80. Blöchl E, Rachel R, Buggraf S, et al (1997) Pyrolobus fumarii, gen. and sp. nov. represents a novel group of Archaea, extending the upper temperature for life to 113°C. Extremophiles 1: 14–21

    Google Scholar 

  81. Cowan DA (1995) Protein stability at high temperatures. Essays Biochem 29: 193–207

    PubMed  CAS  Google Scholar 

  82. Lee B, Vasmatzis G (1997) Stabilization of protein structures. Curr Opin Biotechnol 8: 423–428

    Article  PubMed  CAS  Google Scholar 

  83. Ladenstein R, Antranikian G (1998) Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv Biochem Eng Biotechnol 61: 38–85

    Google Scholar 

  84. Marquet E, Forterre P (1998) Protection of DNA by salts against thermodegradation at temperatures typical for hyperthermophiles. Extremophiles 2: 115–122

    Article  Google Scholar 

  85. Grogan DW (1998) Hyperthermophiles and the problem of DNA. Mol Microbiol 28: 1043–1049

    Article  PubMed  CAS  Google Scholar 

  86. van de Vossenberg JL, Driessen AJ, Konings WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2: 163–170

    Article  PubMed  CAS  Google Scholar 

  87. Jaenicke R (1998) What ultrastable globular proteins teach us about protein stability. Biochemistry (Mosc) 63: 312–321

    CAS  Google Scholar 

  88. Jaenicke R (1991) Protein stability and molecular adaptation to extreme conditions. Eur J Biochem 202: 715–728

    Article  PubMed  CAS  Google Scholar 

  89. Matthews BW (1996) Structural and genetic analysis of the folding and function of T4 isozyme. FASEB J 1996: 35–41

    Google Scholar 

  90. Pace CN (1992) Contribution of the hydrophobic effect to globular protein stability. J Mol Bio! 226: 29–35

    Article  CAS  Google Scholar 

  91. Haney PJ, Badger JH, Buldak GL (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci USA 96: 3578–3583

    Article  PubMed  CAS  Google Scholar 

  92. Waldmann T, Nimmesgern E, Nitsch M, et al (1995) The thermosome of Thermoplasma acidophilum and its relationship to the eukaryotic chaperonin TriC. Eur J Biochem 227: 848–856

    Article  PubMed  CAS  Google Scholar 

  93. Phipps B, Hoffmann A, Stetter KO, et al (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10: 1711–1722

    PubMed  CAS  Google Scholar 

  94. Trent JD, Gabrielsen M, Jensen B, et al (1994) Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176: 6148–6152

    PubMed  CAS  Google Scholar 

  95. Horwich AL, Willson KR (1993) Protein folding in the cell: functions of two families of molecular chaperone hsp 60 and TF55–TCP1. Philos Trans R Soc Lond 339: 313–325

    Article  CAS  Google Scholar 

  96. Kowalak J, Dalluge J, McCloskey J, et al (1994) The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33: 7869–7876

    Article  PubMed  CAS  Google Scholar 

  97. Deckert G, Warren PV, Gaasterland T (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature (Lond) 392: 353–358

    Article  CAS  Google Scholar 

  98. Kelly RM, Peeples TL, Halio SB, et al (1994) Extremely thermophilic microorganisms. Metabolic strategies, genetic characteristics, and biotechnological potential. Ann NY Acad Sci 745: 409–425

    Google Scholar 

  99. Boutheir de la Tour C, Potermer C, Huber R, et al (1991) Reverse gyrase in thermophilic eubacteria. J Bacteriol 173: 3921–3923

    Google Scholar 

  100. Forterre P, Bergerat A, Lopez-Garcia P (1996) The unique DNA topology and DNA topoisomerases of hyperthermophilic Archaea. FEMS Microbiol Rev 18: 237–248

    Article  PubMed  CAS  Google Scholar 

  101. Marguet E, Forterre P (1994) DNA stability at temperatures typical for hyperthermophiles. Nucleic Acids Res 22: 1681–1686

    Article  PubMed  CAS  Google Scholar 

  102. Guipaud O, Marguet E, Noll K, et al (1997) Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritina. Proc Natl Acad Sci USA 94: 10606–10611

    Article  PubMed  CAS  Google Scholar 

  103. Sandman K, Pereira SL, Reeve JN (1998) Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome. Cell Mol Life Sci 54: 1350–1364

    Article  PubMed  CAS  Google Scholar 

  104. Pereira SL, Reeve JN (1998) Histones and nucleosomes in Archaea and Eukarya: a comparative analysis. Extremophiles 2: 141–148

    Article  PubMed  CAS  Google Scholar 

  105. Pereira SL, Grayling RA, Lurz R, et al (1997) Archaeal nucleosomes. Proc Natl Acad Sci USA 94: 12633–12637

    Article  PubMed  CAS  Google Scholar 

  106. Soares D, Kahlke I, Li W-T, et al (1998) Archael histone stability, DNA binding and transcription inhibition above 90°C. Extremophiles 2: 75–81

    Article  PubMed  CAS  Google Scholar 

  107. Robinson H, Gao Y-G, McCrary BS, et al (1998) The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature (Lond) 392: 202–205

    Article  CAS  Google Scholar 

  108. van der Oost J, Ciaramella M, Moracci M, et al (1998) Molecular biology of hyperthermophilic Archaea. Adv Biochem Eng Biotechnol 61: 87–115

    PubMed  Google Scholar 

  109. Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75: 171–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Ohara, N., Tabira, Y., Ohara, N., Yamada, T. (2001). Learning from Bacteria: Molecular Chaperones in Ribosomes and Thermophilic Adaptation. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_39

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics