Skip to main content

Fundamental Aspects of Hyperthermia on Cellular and Molecular Levels

  • Chapter
Book cover Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

Recent studies have demonstrated that apoptosis induction via the intracellular signaling cascade, consisting mainly of the p53 gene, plays an important role in cell death due to various cell injury factors. It has been reported that hsp72 protein is involved in thermotolerance induction, thereby at least partly regulating thermosensitivity. In this chapter, we review various aspects of hyperthermia, namely, thermosensitivity, sublethal thermal damage repair (SLTDR), cell phase response to heat, step-down and step-up heating, thermotolerance, apoptosis, heat shock protein (hsp), and p53 protein and its status at the cellular and molecular levels, and introduce articles concerning these published by our group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busch W (1866) Ueber den Einflusz welchen heftigere Erysipelen zuweilen auf organisierte Neubildungen ausuben. Verh Naturhist Ver Preussen Rheinland Westphalens 23: 28–30

    Google Scholar 

  2. Coley WB (1893) The treatment of malignant tumors by repeated inoculation of erysipelas: with a report of 10 original cases. Am J Med Sci 105: 487–511

    Article  Google Scholar 

  3. Westermark F (1898) Ueber die behandelung des ulcerierende Cervix Karcinoma mit der konstanter Waerme. Zeitbl Gynaecol 22: 1335–1339

    Google Scholar 

  4. Mayer V (1965) Study of the virulence of tick-borne encephalitis virus. IV. Thermosensitivity of virions and its relationship to other genetic markers. Acta Virol 9 (5): 397–408

    PubMed  CAS  Google Scholar 

  5. MacPhee DG (1973) Effect of mild heating on Salmonella typhimurium containing an R factor. J Gen Microbiol 76 (2): 441–444

    PubMed  CAS  Google Scholar 

  6. Bligh J (1966) The thermosensitivity of the hypothalamus and thermoregulation in mammals. Biol Rev Camb Philos Soc 41 (3): 317–368

    Article  PubMed  CAS  Google Scholar 

  7. Muckle DS, Dickson JA (1971) The selective inhibitory effect of hyperthermia on the metabolism and growth of malignant cells. Br J Cancer 25 (4): 771–778

    Article  PubMed  CAS  Google Scholar 

  8. Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34 (11): 3117–3123

    PubMed  CAS  Google Scholar 

  9. Kano E, Miyakoshi J, Ikebuchi M, et al (1979) Differences in hyperthermice effect between forty two and forty four centigrade by water bath and high frequency. In: Okada S, et al (eds) Proceedings, 6th international congress on radiation research. Japanese Association for Radiation Research, Tokyo, pp 841–846

    Google Scholar 

  10. Hayashi S, Kano E, Matsumoto H, et al (1999) Thermosensitivity, incidence of apoptosis and accumulations of hsp72 and p53 proteins of murine L cells in wild type status of p53 gene. J Exp Clin Cancer Res 18 (2): 181–189

    PubMed  CAS  Google Scholar 

  11. von Ardenne M, Reitnauer PG (1966) Attempt to evaluate the degree of damage caused by extreme hyperthermia in Ehrlich ascites mouse tumor cells in vitro. Arch Geschwulstforsch 27 (3): 236–239

    Google Scholar 

  12. Westra A, Dewey WC (1971) Variation in sensitivity to heat shock during the cell cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med 19 (5): 467–477

    Article  PubMed  CAS  Google Scholar 

  13. Terasima T, Tolmach LJ (1963) X-ray sensitivity and DNA synthesis in synchronous populations of HeLa cells. Science 140: 490–492

    Article  PubMed  CAS  Google Scholar 

  14. Elkind MM, Kano E (1971) Radiation-induced age-response changes in Chinese hamster cells. Evidence for a new form of damage and its repair. Int J Radiat Biol Relat Stud Phys Chem Med 19 (6): 547–560

    Article  PubMed  CAS  Google Scholar 

  15. Wallner KE, Banda M, Li GC (1987) Hyperthermic enhancement of cell killing by mitomycin C in mitomycin C-resistant Chinese hamster ovary cells. Cancer Res 47 (5): 1308–1312

    PubMed  CAS  Google Scholar 

  16. Neumuller W, Huttermann J (1980) Radiation damage in solid 5-halouracils: free radicals in single crystals of 5fluorouracil. Int J Radiat Biol Relat Stud Phys Chem Med 37 (1): 49–60

    Article  PubMed  CAS  Google Scholar 

  17. McGinn CJ, Kinsella TJ (1993) The clinical rationale for S-phase radiosensitization in human tumors. Curr Probl Cancer 17 (5): 273–321

    Article  PubMed  CAS  Google Scholar 

  18. Henle KJ (1980) Sensitization to hyperthermia below 43 degree C induced in Chinese hamster ovary cells by step-down heating. J Natl Cancer Inst 64 (6): 1479–1483

    PubMed  CAS  Google Scholar 

  19. Miyakoshi J, Ikebuchi M, Furukawa M, et al (1979) Combined effects of X irradiation and hyperthermia (42 and 44°C) on Chinese hamster V79 cells in vitro. Radiat Res 79: 77–88

    Article  PubMed  CAS  Google Scholar 

  20. Tao TW (1985) Heat-resistant mutants of B-16 melanoma cells. I. Stepwise heating in vitro induces progressive increase in resistance to heat. Int J Cancer 36 (3): 401–405

    PubMed  CAS  Google Scholar 

  21. Miyakoshi J, Heki S, Yamagata K, et al (1981) Induction of thermotolerance by redundant hyperthermia (42, 44°C) in Chinese hamster cells. In: Kano E, et al (eds) Fundamentals of cancer therapy by hyperthermia, radiation and chemicals. Magbros, pp 135–147

    Google Scholar 

  22. Gerner EW, Boone R, Connor WG, et al (1976) A transient thermotolerant survival response produced by single thermal doses in HeLa cells. Cancer Res 36 (3): 1035–1040

    PubMed  CAS  Google Scholar 

  23. Henle KJ, Karamuz JE, Leeper DB (1978) Induction of thermotolerance in Chinese hamster ovary cells by high (45 degrees) or low (40 degrees) hyperthermia. Cancer Res 38 (3): 570–574

    PubMed  CAS  Google Scholar 

  24. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J Cancer 26: 239–245

    Article  PubMed  CAS  Google Scholar 

  25. Wang TH, Wang HS (1999) Apoptosis: (1). Overview and clinical significance. J Formos Med Assoc 98: 381–393

    Google Scholar 

  26. Dyson JE, Simmons DM, Daniel J, et al (1986) Kinetic and physical studies of cell death induced by chemother-

    Google Scholar 

  27. apeutic agents or hyperthermia. Cell Tissue Kinet 19(3): 311–324

    Google Scholar 

  28. Allan DJ, Harmon BV (1986) The morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs. Scanning Electron Microsc 3: 11211133

    Google Scholar 

  29. Bartkowiak D, Hogner S, Baust H, et al (1999) Comparative analysis of apoptosis in HL60 detected by annexin-V and fluorescein-diacetate. Cytometry 37 (3): 191–196

    Article  PubMed  CAS  Google Scholar 

  30. McKenzie SL, Henikoff S, Meselson M (1975) Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc Natl Acad Sci USA 72 (3): 1117–1121

    Article  PubMed  CAS  Google Scholar 

  31. Schedi P, Artavanis-Tsakonas S, Steward R, et al (1978) Two hybrid plasmids with D. melanogaster DNA sequences complementary to mRNA coding for the major heat shock protein. Cell 14 (4): 921–929

    Article  Google Scholar 

  32. De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11 (1): 1–12

    Article  PubMed  Google Scholar 

  33. Soti C, Csermely P (1998) Molecular chaperones in the etiology and therapy of cancer. Pathol Oncol Res 4 (4): 316–321

    Article  PubMed  CAS  Google Scholar 

  34. Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18 (45): 6145–6157

    Article  PubMed  CAS  Google Scholar 

  35. Ootsuyama A, Makino H, Nagao M, et al (1994) Frequent p53 mutation in mouse tumors induced by repeated (3-irradiation. Mol Carcinog 11 (4): 236–242

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Hayashi, S., Kano, E., Hatashita, M., Ohtsubo, T., Katayama, K., Matsumoto, H. (2001). Fundamental Aspects of Hyperthermia on Cellular and Molecular Levels. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_38

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics