Skip to main content

Induction of Heat-Shock Proteins and Their Biological Functions

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain
  • 513 Accesses

Summary

Almost all organisms respond to upshifts in temperature (heat shock) by synthesizing a set of proteins called heat-shock proteins (HSPs). These HSPs are induced not only by heat shock but also by various other environmental stresses. Induction of HSPs is regulated by the trans-acting heat-shock factors (HSFs) and cis-acting heat-shock element (HSE) present at the promoter region of each heat-shock gene. HSPs usually are also expressed constitutively at normal growth temperatures and have basic and indispensable functions in the life cycle of proteins as molecular chaperones, as well as playing a role in protecting cells from deleterious stresses. Molecular chaperones are able to inhibit the aggregation of partially denatured proteins and refold them using the energy of ATP. Recently, there have been expectations for the use of molecular chaperones for the protection against and therapeutic treatment of inherited diseases caused by protein mis-folding. In this review, we focus on the mammalian Hsp-40, a homolog of bacterial DnaJ heat-shock protein, and the beneficial functions of molecular chaperones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schlesinger MJ, Ashburner M, Tissieres A (eds) (1982) Heat shock from bacteria to man. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  2. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55: 1151–1191

    Article  PubMed  CAS  Google Scholar 

  3. Ohtsuka K, Masuda A, Nakai A, et al (1990) A novel 40–19. kDa protein induced by heat shock and other stresses in mammalian and avian cells. Biochem Biophys Res Commun 166: 642–647

    Article  PubMed  CAS  Google Scholar 

  4. Hattori H, Liu Y-C, Tohnai I, et al (1992) Intracellular localization and partial amino acid sequence of a stress-inducible 40-kDa protein in HeLa cells. Cell Struct Funct 17: 77–86 21.

    Google Scholar 

  5. Ohtsuka K, Utsumi KR, Kaneda T, et al (1993) Effect of ATP on the release of hsp70 and hsp40 from the nucleus in heat-shocked HeLa cells. Exp Cell Res 209: 357–366 21a.

    Article  Google Scholar 

  6. Ohtsuka K, Nakamura H, Sato C (1986) Intracellular distribution of 73000 and 72000 dalton heat shock pro¬teins in HeLa cells. Int J Hyperth 2: 267–275

    Article  CAS  Google Scholar 

  7. Hattori H, Kaneda T, Lokeshwar B, et al (1993) A stress- 22. inducible 40kDa protein (hsp40): purification by modi¬fied two-dimensional gel electrophoresis and co-localization with hsc70(p73) in heatshocked HeLa cells. J Cell Sci 104: 629–638

    PubMed  CAS  Google Scholar 

  8. Yamane M, Hattori H, Sugito K, et al (1995) Cotranslo¬cation and colocalization of hsp40 (DnaJ) with hsp70 (DnaK) in mammalian cells. Cell Struct Funct 20:157¬166

    Google Scholar 

  9. Hayashi Y, Tohnai I, Kaneda T, et al (1991) Transloca¬tion of hsp-70 and protein synthesis during continuous 25. heating at mild temperatures in HeLa cells. Radiat Res 125: 80–88

    Article  PubMed  CAS  Google Scholar 

  10. Liu Y-C, Hayashi Y, Tohnai I, et al (1992) Effects of con

    Google Scholar 

  11. Sugito K, Yamane M, Hattori H, (1995) Interaction between hsp70 and hsp40, eukaryotic homologues of DnaK and DnaJ, in human cells expressing mutant-type p53. FEBS Lett 358: 161–164

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki T, Usuda N, Murata S,(1999) Presence of molecular chaperones, heat shock cognate (Hsc) 70and heat shock proteins (Hsp) 40, in the postsynaptic structures of rat brain. Brain Res 816: 99–100

    Google Scholar 

  13. Mori T. Sugito K, Hata M. (1999) Mammalian Hsp70 and Hsp40: characteristic induction by environmental stresses and tissue specific expression. Jpn J Hyperth Oncol 15: 21–29

    Google Scholar 

  14. Ohtsuka K (1993) Cloning of a cDNA for heat-shock protein hsp40, a human homologue of bacterial DnaJ. Biochem Biophys Res Commun 197: 235–240

    Article  PubMed  Google Scholar 

  15. Raabe T, Manley JL (1991) A human homologue of the Escherichia coli DnaJ heat-shock protein. Nucleic Acids Res 19: 6645

    Article  Google Scholar 

  16. Shi Y, Mosser DD, Morimoto RI (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12: 654–666

    Article  Google Scholar 

  17. Ohtsuka K (1997) Mammalian Hsp40. In: M-J Gething (ed) Guidebook to molecular chaperones and proteinfolding catalysts. Oxford University Press, Oxford, pp 121–122

    Google Scholar 

  18. Bork P, Sander C, Valencia A, et al (1992) A module of the DnaJ heat shock proteins found in malaria parasites. Trends Biochem Sci 17: 129

    Article  Google Scholar 

  19. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36 Hata M, Okumura K, Seto M, et al (1996) Genomic cloning of a human heat shock protein 40 (Hsp40) gene (HSPF1) and its chromosomal localization to 19p13.2. Genomics 38: 446–449

    Google Scholar 

  20. Hata M, Ohtsuka K (1998) Characterization of HSE sequences in human Hsp40 gene: structural and promoter analysis. Biochim Biophys Acta 1397: 43–55

    Article  Google Scholar 

  21. Hata M, Ohtsuka K (2000) Cloning and expression of murine Hsp40 gene: Differences in initiation sites between heat-induced and constitutive transcript. DNA Sequence (in press)

    Google Scholar 

  22. Hunt C, Morimoto RI (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci USA 82: 6455–6459

    Article  Google Scholar 

  23. Ohtsuka K, Hata M (2000) Mammalian HSP4O/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5: 98–112

    Article  PubMed  CAS  Google Scholar 

  24. Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature (Lond) 256: 500–502

    Article  CAS  Google Scholar 

  25. Li GC (1985) Elevated levels of 70000 dalton heat shock protein in transiently thermotolerant Chinese hamster fibroblasts and in their stable heat resistant variants. Int J Radiat Oncol Biol Phys 11: 165–177

    Article  PubMed  CAS  Google Scholar 

  26. Kaneko R, Hattori H, Hayashi Y, et al (1995) Heatshock protein 40, a novel predictor of thermotolerance in murine cells. Radiat Res 142: 91–97 41.

    Google Scholar 

  27. Kaneko R, Hayashi Y, Tohnai I, et al (1997) Hsp40, a possible indicator for thermotolerance of murine tumour in vivo. Int J Hyperth 13: 507–516

    Article  CAS  Google Scholar 

  28. Laszlo A (1988) Evidence for two states of thermotolerance in mammalian cells. Int J Hyperth 4: 513–526 42.

    Google Scholar 

  29. Brown IR, Sharp FR (1999) The cellular stress gene response in brain. In: Latchman DS (ed) Stress proteins. Springer, Berlin, pp 243–263 43.

    Google Scholar 

  30. Carroll R, Yellon DM (1999) Heat stress proteins and their relationship to myocardial protection. In: Latchman DS (ed) Stress proteins. Springer, Berlin, pp 265–279

    Chapter  Google Scholar 

  31. Hendrick JP, Hartl FU (1993) Molecular chaperone 44. functions of heat-shock proteins. Annu Rev Biochem 62: 349–384

    Article  PubMed  CAS  Google Scholar 

  32. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature (Lond) 381: 571–579 44a.

    Article  Google Scholar 

  33. Caplan AJ, Cyr DM, Douglas MG (1993) Eukaryotic homologues of Escherichia coli dnaJ: a diverse protein family that functions with hsp70 stress proteins. Mol Biol Cell 4: 555–563

    PubMed  CAS  Google Scholar 

  34. Silver PA, Way JC (1993) Eukaryotic DnaJ homologs 45. and the specificity of Hsp70 activity. Cell 74: 5–6

    Article  PubMed  CAS  Google Scholar 

  35. Chappell TG, Welch WJ, Schlossman DM, et al (1986) Uncoating ATPase is a member of the 70 kilodalton 46. family of stress proteins. Cell 45: 3–13

    Article  PubMed  CAS  Google Scholar 

  36. Ungewickell E, Ungewickell H, Holstein SE, et al (1995) 47. Role of auxilin in uncoating clathrin-coated vesicles. Nature (Lond) 378: 632–635

    Google Scholar 

  37. Frydman J, Nimmesgern E, Ohtsuka K, et al (1994) 48. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature (Lond) 370: 111–117

    Google Scholar 

  38. Frydman J, Hartl FU (1996) Principles of chaperone- 49. assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272: 1497–1502 50.

    Google Scholar 

  39. Minami Y, Hohfeld J, Ohtsuka K, et al (1996) Regulation of the heat-shock protein 70 reaction cycle by 51. the mammalian DnaJ homolog, Hsp40. J Biol Chem 271: 19617–19624 52.

    Google Scholar 

  40. Michels AA, Kanon B, Konings AW, et al (1997) Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J Biol Chem 272: 3328333289

    Google Scholar 

  41. Jeoung D-I, Chen S, Windsor J, et al (1991) Human major HSP70 protein complements the localization and functional defects of cytoplasmic mutant SV40 T antigen in Swiss 3T3 mouse fibroblast cells. Genes Dev 5: 22352244

    Google Scholar 

  42. Yehiely F, Oren M (1992) The gene for the rat heat-shock cognate, hsc70, can suppress oncogene-mediated transformation. Cell Growth Differ 3: 803–809

    Google Scholar 

  43. Tang Y, Ramakrishnan C, Thomas J, et al (1997) A role for HDJ-2/HSDJ in correcting subnuclear trafficking, transactivation, and transrepression defects of a glucocorticoid receptor zinc finger mutant. Mol Biol Cell 8: 795–809

    Google Scholar 

  44. Cummings CJ, Mancini MA, Antalffy B (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19: 148–154

    Article  Google Scholar 

  45. Kobayashi Y, Kume A, Li M, et al (2000) Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 275: 8772–8778

    Article  Google Scholar 

  46. Thomas PJ, Qu B-H, Pedersen PL (1995) Defective protein folding as a basis of human disease. Trends Biochem Sci 20: 456–459

    Article  Google Scholar 

  47. Welch WJ, Gambetti P (1998) Chaperoning brain diseases. Nature (Lond) 392: 23–24

    Article  Google Scholar 

  48. Smith JM (1958) Prolongation of the life of Drosophila subobscura by a brief exposure of adults to a high temperature. Nature (Lond) 181: 496–497

    Article  Google Scholar 

  49. Lithgow GJ, White TM, Melov S, et al (1995) Thermo-tolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92: 7540–7544

    Article  Google Scholar 

  50. Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature (Lond) 390: 30

    Google Scholar 

  51. Jazwinski SM (1996) Longevity, genes, and aging. Science 273: 54–59

    Article  Google Scholar 

  52. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273: 59–63

    Article  Google Scholar 

  53. Krebs RA, Feder ME (1997) Deleterious consequences of Hsp70 overexpression in Drosophila melanogaster larvae. Cell Stress Chaperones 2: 60–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Ohtsuka, K., Hata, M. (2001). Induction of Heat-Shock Proteins and Their Biological Functions. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_37

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics