Skip to main content

Summary

Fever is a symptom common to infectious diseases with bacteria and viruses, and it is also observed in experimental animals in response to the peripheral or central administration of lipopolysaccharide (LPS), the principal element of bacterial endotoxin. Studies on the experimental analysis of fever trying to clarify each step in the sequence from LPS injection to thermoregulatory effector responses, which produce an increase in body temperature, have a long history. In the investigations of the fever mechanism, knowledge especially about the intermediary molecules that participate in LPS fever is rapidly accumulating, and the list of substances considered as relevant now includes endogenous pyrogens, interferons, interleukin1 and -6, tumor necrosis factors, and prostaglandins. On the other hand, the results of research on fever suppression at full-term pregnancy have suggested that certain antipyretic substances, so-called endogenous cryogens, exist. As a candidate of endogenous cryogen, arginine-vasopressin, for instance, suppressed fever induced by pyrogen administration when the animals were pretreated with the cryogen. All pyrogens produce an increase in body temperature affecting the intracerebral thermoregulatory center; however, it is not yet known how and where those peripherally generated substances drive the central nervous mechanism located behind the blood-brain barrier. Recent reports suggest that neuronal signals relating to the generation of fever are probably transferred neuronally from the periphery to the brain, because subdiaphragmatic vagotomy suppresses fever caused by the peripheral administration of LPS. Therefore, fever as a host defense reaction may be considered as a regulated increase in the temperature based on the integration of a multitude of humoral and neuronal information. These inputs include drives for the rise in body temperature, but also opposing drives, probably generated secondarily, that ultimately maintain fever hyperthermia in the nondeleterious range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caldwell FT Jr, Graves DB, Wallace BH (1997) Pathogenesis of fever in a rat burn model: the role of cytokines and lipopolysaccharide. J Burn Care Rehabil 18: 525530

    Google Scholar 

  2. Iriki M, Saigusa T (1998) Regional differentiation of sympathetic efferents during fever. Prog Brain Res 115: 477497

    Google Scholar 

  3. Hashimoto M, Nagai M, Iriki M (1985) Comparison of the action of prostaglandin with endotoxin on thermoregulatory response thresholds. Pflügers Arch 405: 1–4

    Article  PubMed  CAS  Google Scholar 

  4. Iriki M, Hashimoto M, Saigusa T (1987) Threshold dissociation of thermoregulatory effector responses in febrile rabbits. Can J Physiol Pharmacol 65: 1304–1311

    Article  PubMed  CAS  Google Scholar 

  5. Simon E (1999) Thermoregulation as a switchboard of autonomic nervous and endocrine control. Jpn J Physiol 49: 297–323

    Article  PubMed  CAS  Google Scholar 

  6. Dinarello CA (1999) Cytokines as endogenous pyrogens. J Infect Dis 179 (suppl 2): S294 — S304

    Article  PubMed  CAS  Google Scholar 

  7. Hashimoto M, Bando T, Iriki M, et al (1988) Effect of indomethacin on febrile response to recombinant human interleukin 1-a in rabbits. Am J Physiol 255: R527 — R533

    PubMed  CAS  Google Scholar 

  8. Hashimoto M, Watanabe M, Iriki M (1989) Comparison of pyrogenicity between IL-1 and TNF. In: Mercer JB (ed) Thermal physiology. Excerpta Medica, Amsterdam, pp 401–406

    Google Scholar 

  9. Hashimoto M (1991) Characterization and mechanism of fever induction by interleukin-1 beta. Pflügers Arch 419: 616–621

    Article  PubMed  CAS  Google Scholar 

  10. Hashimoto M, Sakakibara Y, Iriki M, et al (1994) Circulating Interleukin-1 does not mediate the fever induced by tumor necrosis factor-alpha in rabbits. Pflügers Arch 427: 365–372

    Article  PubMed  CAS  Google Scholar 

  11. Kluger JM (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71: 93–127

    PubMed  CAS  Google Scholar 

  12. Blatteis CM, Bealer SL, Hunter WS, et al (1983) Suppression of fever after lesions of the anteroventral third ventricle in guinea pigs. Brain Res Bull 11: 519–526

    Article  PubMed  CAS  Google Scholar 

  13. Stitt JT (1985) Evidence for the involvement of the organum vasculosum laminae terminalis in the febrile response of rabbits and rats. J Physiol (Lond) 368: 501–511

    CAS  Google Scholar 

  14. Hashimoto M, Ishikawa Y, Yokota S, et al (1991) Action site of circulating interleukin-1 on the rabbit brain. Brain Res 540: 217–223

    Article  PubMed  CAS  Google Scholar 

  15. Hashimoto M, Ueno T, Iriki M (1994) What roles does the organum vasculosum laminae terminalis play in fever in rabbits? Pflügers Arch 429: 50–57

    Article  PubMed  CAS  Google Scholar 

  16. Watkins LR, Goehler LE, Relton JK, et al (1995) Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett 183: 27–31

    Article  PubMed  CAS  Google Scholar 

  17. Sehic E, Blatteis CM (1996) Blockade of lipopolysaccharide-induced fever by subdiaphragmatic vagotomy in guinea pigs. Brain Res 726: 160–166

    Article  PubMed  CAS  Google Scholar 

  18. Hansen MK, Krueger JM (1997) Subdiaphragmatic vagotomy blocks the sleep-and fever-promoting effects of interleukin-10. Am J Physiol 273: R1246 — R1253

    PubMed  CAS  Google Scholar 

  19. Romanovsky A, Simons CT, Székely M, et al (1997) The vagus nerve in the thermoregulatory response to systemic inflammation. Am J Physiol 273: R407 — R413

    PubMed  CAS  Google Scholar 

  20. Mordes JP, Herrera MG, Silen W (1977) Decreased weight gain and food intake in vagotomized rats. Proc Soc Exp Biol Med 156: 257–260

    PubMed  CAS  Google Scholar 

  21. Kraly FS, Jerome C, Smith GP (1986) Specific postoperative syndromes after total and selective vagotomies in the rat. Appetite 7: 1–17

    Article  PubMed  CAS  Google Scholar 

  22. Himms-Hagen J (1990) Brown adipose tissue thermogenesis: role in thermoregulation, energy regulation and obesity. In: Schönbaum E, Lomax P (eds) Thermoregulation: physiology and biochemistry. Pergamon, New York, pp 327–414

    Google Scholar 

  23. Lin MT, Chern YF (1985) Effects of subdiaphragmatic vagotomy on thermoregulatory responses of rats to different ambient temperatures. Exp Neurol 88: 467–470

    Article  PubMed  CAS  Google Scholar 

  24. Romanovsky A, Kulchitsky VA, Simons CT, et al (1997) Febrile responsiveness of vagotomized rats is suppressed even in the absence of malnutrition. Am J Physiol 273: R777 — R783

    PubMed  CAS  Google Scholar 

  25. Romanovsky A, Kulchitsky VA, Simons CT, et al (1997) Cold defense mechanisms in vagotomized rats. Am J Physiol 273: R784 — R789

    PubMed  CAS  Google Scholar 

  26. Goehler LE, Gaykema RP, Hammack SE, et al (1998) Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res 804: 306–310

    Article  PubMed  CAS  Google Scholar 

  27. Gaykema RP, Goehler LE, Tilders FJ, et al (1998) Bacte- rial endotoxin induces fos immunoreactivity in primary afferent neurons of the vagus nerve. Neuroimmunomod-

    Google Scholar 

  28. ulation 5:234–240

    Google Scholar 

  29. Niijima A (1996) The afferent discharges for interleukin 10 in the hepato-portal system in the anesthetized rat. J Auton Nery Syst 61: 287–291

    Article  CAS  Google Scholar 

  30. Goehler LE, Relton JK, Dripps D, et al (1997) Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull 43: 357–364

    Article  PubMed  CAS  Google Scholar 

  31. Simons CT, Kulchitsky VA, Sugimoto N, et al (1998) Signaling the brain in systemic inflammation: which vagal branch is involved in fever genesis? Am J Physiol 275: R63 - R68

    PubMed  CAS  Google Scholar 

  32. Stitt JT (1991) Differential sensitivity in the sites of fever production by prostaglandin El within the hypothalamus of the rat. J Physiol (Lond) 432: 99–110

    CAS  Google Scholar 

  33. Dinarello CA, Cannon JG, Mancilla J, et al (1991) Interleukin-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells. Brain Res 562: 199–206

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura H, Seto Y, Motoyoshi S, et al (1988) Recombinant human tumor necrosis factor causes long-lasting and prostaglandin-mediated fever, with little tolerance, in rabbits. J Pharmacol Exp Ther 245: 336–341

    PubMed  CAS  Google Scholar 

  35. Cao C, Matsumura K, Yamagata K, et al (1996) Endothelial cells of the rat brain vasculature express cyclooxyge nase-2 mRNA in response to systemic interleukin-lbeta: a possible site of prostaglandin synthesis responsible for fever. Brain Res 733: 263–272

    Article  PubMed  CAS  Google Scholar 

  36. Matsumura K, Watanabe Y, Onoe H, et al (1990) High density of prostaglandin E2 binding sites in the anterior wall of the 3rd ventricle: a possible site of its hyperthermic action. Brain Res 533: 147–151

    Article  PubMed  CAS  Google Scholar 

  37. Matsumura K, Watanabe Y, Imai-Matsumura K, et al (1992) Mapping of prostaglandin E2 binding sites in rat brain using quantitative autoradiography. Brain Res 581: 292–298

    Article  PubMed  CAS  Google Scholar 

  38. Sugimoto N, Simons CT, Romanovsky AA (1999) Vagotomy does not affect thermal responsiveness to intrabrain prostaglandin E(2) and cholecystokinin octapeptide. Brain Res 844: 157–163

    Article  PubMed  CAS  Google Scholar 

  39. Milligan ED, McGorry MM, Fleshner M, et al (1997) Subdiaphragmatic vagotomy does not prevent fever following intracerebroventricular prostaglandin E2: further evidence for the importance of vagal afferents in immune-to-brain communication. Brain Res 766: 240–243

    Article  PubMed  CAS  Google Scholar 

  40. Goldbach JM, Roth J, Zeisberger E (1997) Fever sup pression by subdiaphragmatic vagotomy in guinea pigs depends on the route of pyrogen administration. Am J Physiol 272: R675 - R681

    PubMed  CAS  Google Scholar 

  41. Caldwell FT, Graves DB, Wallace BH (1999) Humoral versus neural pathways for fever production in rats after administration of lipopolysaccharide. J Trauma 47: 120–129

    Article  PubMed  CAS  Google Scholar 

  42. Maier SF, Goehler LE, Fleshner M, et al (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840: 289–300

    Article  PubMed  CAS  Google Scholar 

  43. Kasting NW, Veale WL, Cooper KE (1978) Suppression of fever at term of pregnancy. Nature (Lond) 271: 245–246

    Article  CAS  Google Scholar 

  44. Zeisberger E, Merker G, Blahser S (1981) Fever response in the guinea pig before and after parturition. Brain Res 212: 379–392

    Article  PubMed  CAS  Google Scholar 

  45. Martin SM, Malkinson TJ, Veale WL, et al (1996) Prostaglandin fever in rats throughout the estrous cycle, late pregnancy and post parturition. J Neuroendocrinol 8: 145–151

    Article  PubMed  CAS  Google Scholar 

  46. Martin SM, Malkinson TJ, Veale WL, et al (1995) Fever in pregnant, parturient, and lactating rats. Am J Physiol 268: R919 - R923

    PubMed  CAS  Google Scholar 

  47. Naccarato EF, Hunter WS (1983) Brain and deep abdom inal temperatures during induced fever in pregnant rabbits. Am J Physiol 245: R421 - R425

    PubMed  CAS  Google Scholar 

  48. Blatteis CM, Hunter WS, Busija DW, et al (1986) Ther moregulatory and acute-phase responses to endotoxin of full-term pregnant rabbits. J Appl Physiol 60: 1578–1583

    PubMed  CAS  Google Scholar 

  49. Landgraf R, Neumann I, Pittman QJ (1991) Septal and hippocampal release of vasopressin and oxytocin during late pregnancy and parturition in the rat. Neuroen docrinology 54: 378–383

    Article  CAS  Google Scholar 

  50. Cooper KE, Kasting NW, Lederis K, et al (1979) Evidence supporting a role for endogenous vasopressin in natural suppression of fever in the sheep. J Physiol (Lond) 295: 33–45

    CAS  Google Scholar 

  51. Roth J, Zeisberger E (1992) Evidence for antipyretic vasopressinergic pathways and their modulation by nora drenergic afferents. Physiol Res 41: 49–55

    PubMed  CAS  Google Scholar 

  52. Eliason HL, Fewell JE (1998) AVP mediates the attenu ated febrile response to administration of PGE1 in rats near term of pregnancy. Am J Physiol 275: R691 - R696

    PubMed  CAS  Google Scholar 

  53. Eliason HL, Fewell JE (1999) Arginine vasopressin does not mediate the attenuated febrile response to intra venous IL-lbeta in pregnant rats. Am J Physiol 276: R450 - R454

    PubMed  CAS  Google Scholar 

  54. Chen X, Hirasawa M, Takahashi Y, et al (1999) Suppres sion of PGE2 fever at near term: reduced thermogenesis but not enhanced vasopressin antipyresis. Am J Physiol 277: R354 - R361

    PubMed  CAS  Google Scholar 

  55. Imai-Matsumara K, Matsumura K, Morimoto A, et al (1990) Suppression of cold-induced thermogenesis in full term pregnant rats. J Physiol (Lond) 425: 271–281

    CAS  Google Scholar 

  56. Pittman QJ, Cooper KE, Veale WL, et al (1973) Fever in newborn lambs. Can J Physiol Pharmacol 51: 868–872

    Article  PubMed  CAS  Google Scholar 

  57. Cooper KE, Kasting NW, Lederis K, et al (1979) Evidence supporting a role for endogenous vasopressin in natural suppression of fever in the sheep. J Physiol (Lond) 295: 33–45

    CAS  Google Scholar 

  58. Blatteis CM (1975) Postnatal development of pyrogenic sensitivity in guinea pigs. J Appl Physiol 39: 251–257

    PubMed  CAS  Google Scholar 

  59. Hull D, McIntyre J, Vinter J (1993) Age-related changes in endotoxin sensitivity and the febrile response of newborn rabbits. Biol Neonate 63: 370–379

    Article  PubMed  CAS  Google Scholar 

  60. Olmstead CE, Villablanca JR (1988) Maturation of pyrogen-elicited fever in the kitten. Brain Res 442: 279–286

    Article  PubMed  CAS  Google Scholar 

  61. Kasting NW, Wilkinson MF (1987) Vasopressin functions as an endogenous antipyretic in the newborn. Biol Neonate 51: 249–254

    Article  PubMed  CAS  Google Scholar 

  62. Moraes RN, Macari M, Pela IR (1985) Observations on the development of the febrile response to pyrogen in newborn pigs. Biol Neonate 48: 307–312

    Article  PubMed  CAS  Google Scholar 

  63. Chen X, Landgraf R, Pittman QJ (1997) Differential ventral septal vasopressin release is associated with sexual dimorphism in PGE2 fever. Am J Physiol 272: R1664 - R1669

    PubMed  CAS  Google Scholar 

  64. Pittman QJ, Chen X, Mouihate A, et al (1998) Vasopressin-induced antipyresis. Sex-and experience-dependent febrile responses. Ann N Y Acad Sci 856: 5361

    Google Scholar 

  65. Kasting NW, Mazurek MF, Martin JB (1985) Endotoxin increases vasopressin release independently of known physiological stimuli. Am J Physiol 248: E420 - E424

    PubMed  CAS  Google Scholar 

  66. Wilkinson MF, Horn TF, Kasting NW, et al (1994) Central interleukin-1 beta stimulation of vasopressin release into the rat brain: activation of an antipyretic pathway. J Physiol (Lond) 481: 641–646

    CAS  Google Scholar 

  67. Kasting NW, Carr DB, Martin JB, et al (1983) Changes in cerebrospinal fluid and plasma vasopressin in the febrile sheep. Can J Physiol Pharmacol 61: 427–431

    Article  PubMed  CAS  Google Scholar 

  68. Naylor AM, Ruwe WD, Kohut AF, et al (1985) Perfusion of vasopressin within the ventral septum of the rabbit suppresses endotoxin fever. Brain Res Bull 15: 209213

    Google Scholar 

  69. Kasting NW (1989) Criteria for establishing a physiological role for brain peptides. A case in point: the role of vasopressin in thermoregulation during fever and antipyresis. Brain Res Brain Res Rev 14: 143–153

    Article  PubMed  CAS  Google Scholar 

  70. Pittman QJ, Wilkinson MF (1992) Central arginine vasopressin and endogenous antipyresis. Can J Physiol Pharmacol 70: 786–790

    Article  PubMed  CAS  Google Scholar 

  71. Naylor AM, Pittman QJ, Veale WL (1988) Stimulation of vasopressin release in the ventral septum of the rat brain suppresses prostaglandin E1 fever. J Physiol (Lond) 399: 177–189

    CAS  Google Scholar 

  72. Cooper KE, Naylor AM, Veale WL (1987) Evidence supporting a role for endogenous vasopressin in fever suppression in the rat. J Physiol (Lond) 387: 163–172

    CAS  Google Scholar 

  73. Malkinson TJ, Bridges TE, Lederis K, et al (1987) Perfusion of the septum of the rabbit with vasopressin antiserum enhances endotoxin fever. Peptides 8: 385389

    Google Scholar 

  74. Ostrowski NL, Lolait SJ, Bradley DJ, et al (1992) Distribution of Via and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology 131: 533–535

    Article  PubMed  CAS  Google Scholar 

  75. Szot P, Bale TL, Dorsa DM (1994) Distribution of messenger RNA for the vasopressin Vla receptor in the CNS of male and female rats. Brain Res Mol Brain Res 24: 1–10

    Article  PubMed  CAS  Google Scholar 

  76. Bernardini GL, Lipton JM, Clark WG (1983) Intracerebroventricular and septal injections of arginine vasopressin are not antipyretic in the rabbit. Peptides 4: 195–198

    Article  PubMed  CAS  Google Scholar 

  77. Glyn-Ballinger JR, Bernardini GL, Lipton JM (1983) Alpha-MSH injected into the septal region reduces fever in rabbits. Peptides 4: 199–203

    Article  PubMed  CAS  Google Scholar 

  78. Zimmer JA, Lipton JM (1981) Central and peripheral injections of ACTH (1–24) reduce fever in adrenalectomized rabbits. Peptides 2: 413–417

    Article  PubMed  CAS  Google Scholar 

  79. Huang QH, Entwistle ML, Alvaro JD, et al (1997) Antipyretic role of endogenous melanocortins mediated by central melanocortin receptors during endotoxininduced fever. J Neurosci 17: 3343–3351

    PubMed  CAS  Google Scholar 

  80. Landgraf R, Malkinson TJ, Veale WL, et al (1990) Vasopressin and oxytocin in rat brain in response to prostaglandin fever. Am J Physiol 259: R1056 - R1062

    PubMed  CAS  Google Scholar 

  81. Landgraf R, Neumann I, Holsboer F, et al (1995) Interleukin-1 beta stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci 7: 592–598

    Article  PubMed  CAS  Google Scholar 

  82. Yoshimura R, Kiyama H, Kimura T, et al (1993) Localization of oxytocin receptor messenger ribonucleic acid in the rat brain. Endocrinology 133: 1239–1246

    Article  PubMed  CAS  Google Scholar 

  83. Kovacs GL, De Wied D (1983) Hormonally active arginine-vasopressin suppresses endotoxin-induced fever in rats: lack of effect of oxytocin and a behaviorally active vasopressin fragment. Neuroendocrinology 37: 258–261

    Article  PubMed  CAS  Google Scholar 

  84. Naylor AM, Ruwe WD, Veale WL (1986) Antipyretic action of centrally administered arginine vasopressin but not oxytocin in the cat. Brain Res 385: 156–160

    Article  PubMed  CAS  Google Scholar 

  85. Ushikubi F, Segi E, Sugimoto Y, et al (1998) Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature (Lond) 395: 281–284

    Article  CAS  Google Scholar 

  86. Shibata M, Uno T, Hashimoto M (1999) Disinhibition of lower midbrain neurons enhances non-shivering thermogenesis in anesthetized rats. Brain Res 833: 242–250

    Article  PubMed  CAS  Google Scholar 

  87. Iriki M (1986) Fever and fever syndrome-current problems. Jpn J Physiol 38: 233–250

    Article  Google Scholar 

  88. Stitt JT (1990) Passage of immunomodulators across the blood-brain barrier. Yale J Biol Med 63: 121–131

    PubMed  CAS  Google Scholar 

  89. Kluger MJ, Kozak W, Leon LR, et al (1995) Cytokines and fever. Neuroimmunomodulation 2: 216–223

    Article  PubMed  CAS  Google Scholar 

  90. Blatteis CM, Sehic E, Li S (1998) Afferent pathways of pyrogen signaling. Ann N Y Acad Sci 856: 95–107

    Article  PubMed  CAS  Google Scholar 

  91. Blatteis CM, Sehic E (1998) Cytokines and fever. Ann N Y Acad Sci 840: 608–618

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Hashimoto, M., Kuroshima, A. (2001). Autonomic and Endocrine Adjustments in Fever. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_31

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics