Skip to main content

Summary

The rise in deep-body temperature is etiologically categorized into active hyperthermia and passive hyperthermia. A typical example of active hyperthermia is fever. Fever is a centrally regulated rise in core ternperature that is primarily determined by changes in the activity of hypothalamic thermosensitive neurons in response to both pyrogenic cytokines and cryogenic substances derived from the biodefense system. Fever is a phylogenetically old phenomenon observed in invertebrates as well as in vertebrates. Although fever is occasionally harmful, it is likely that fever has evolved as an adaptive host defense response to infection. The febrile temperature exerts detrimental effects on the growth of microorganisms and enhancing effects on T-cellmediated immunity in vitro. Although some functions of the natural immunity (natural killer cell activity and the production of cytokines by macrophages) are suppressed at febrile temperatures, it is presumed that the net effect of febrile temperature on both attacking factors and host defense activities may promote the survival rate of the infected host. Passive hyperthermia as a result of inadequate heat loss in a warm environment, if it is severe, enhances bacterial translocation across the gut mucosal barrier. The gut-derived endotoxin triggers the production of pyrogenic cytokines in the mesenteric lymphoid tissues and liver. Thus, such cytokines activate the immune system on one hand and potentially aggravate environmentally or behaviorally (e.g., exercise) induced hyperthermia by their pyrogenic actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ader R, Felten DL, Cohen, N (eds) (1991) Psychoneuroimmunology, 2nd edn. Academic Press, New York

    Google Scholar 

  2. Hori T, Katafuchi T, Take S, et al (1995) The autonomic nervous system as a communication channel between the brain and the immune system. Neuroimmunomodulation 2: 203–215

    Article  PubMed  CAS  Google Scholar 

  3. Katuura G, Arimura A, Koves K, et al (1990) Involvement of organum vasculosum lamina terminalis and preoptic area in interleukin 10-induced ACTH release. Am J Physiol 258: E163 - E171

    Google Scholar 

  4. Hori T, Nakashima T, Take S, et al (1991) Immune cytokines and regulation of body temperature, food intake and cellular immunity. Brain Res Bull 27: 309–313

    Article  PubMed  CAS  Google Scholar 

  5. Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71: 93–127

    PubMed  CAS  Google Scholar 

  6. Take S, Mori S, Katafuchi T, et al (1993) Central interferon-a inhibits natural killer cytotoxicity through sympathetic innervation. Am J Physiol 265: R453 - R459

    PubMed  CAS  Google Scholar 

  7. Krueger JM, Toth LA, Floyd R, et al (1994) Sleep, microbes and cytokines. Neuroimmunomodulation 1: 100–109

    Article  PubMed  CAS  Google Scholar 

  8. Hori T, Oka T, Hosoi M, et al (1998) Pain modulatory actions of cytokines and PGE2 in the brain. Ann NY Acad Sci 840: 269–281

    Article  PubMed  CAS  Google Scholar 

  9. Satinoff E (1978) Neural organization and evolution of thermal regulation in mammals. Science 201: 16–22

    Article  PubMed  CAS  Google Scholar 

  10. Hori T (1984) Capsaicin and central control of thermoregulation. Pharmacol Ther 206: 389–416

    Article  Google Scholar 

  11. Simon E, Pierau FK, Taylor DCM (1986) Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev 66: 235–300

    PubMed  CAS  Google Scholar 

  12. Kasnosue K, Hosono T, Zhang YH, et al (1998) Neuronal networks controlling thermoregulatory effectors. Prog Brain Res 115: 49–62

    Article  Google Scholar 

  13. Blatteis CM, Sehic E (1997) Prostaglandin E2: a putative fever mediator. In: Mackowiak PA (ed) Fever, basic mechanisms and management, 2nd edn. Lippincott-Raven, Philadelphia, pp 117–145

    Google Scholar 

  14. Matsumura K, Cao C, Ozaki M, et al (1998) Brain endothelial cells express cyclooxygenase-2 during lipopolysaccharide-induced fever: light and electron microscopic immunocytochemical studies. J Neurosci 18: 6279–6289

    PubMed  CAS  Google Scholar 

  15. Nakashima T, Murakami T, Murai Y, et al (1995) Naloxone suppresses the rising phase of fever induced by interferon-a. Brain Res Bull 37: 61–66

    Article  PubMed  CAS  Google Scholar 

  16. Nakashima T, Hori T, Kuriyama K, et al (1988) Effects of interferon-a on the activity of preoptic thermosensitive neurons in tissue slices. Brain Res 454: 361–367

    Article  PubMed  CAS  Google Scholar 

  17. Davatelis G, Wolpe SD, Sherry B, et al (1989) Macrophage inflammatory protein-1: a prostaglandin-independent endogenous pyrogen. Science 243: 1066–1068

    Article  PubMed  CAS  Google Scholar 

  18. Munck A, Guyre PM (1991) Glucocorticoids and immune function. In: Ader R, Felten DL, Cohen N (eds) Psychoneuroimmunology, 2nd edn, Academic Press, New York, pp 447–474

    Google Scholar 

  19. De Waal Malefyt RD, Abrams J, Bennett B, et al (1991) Interleukin-10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174: 1209–1220

    Article  Google Scholar 

  20. Engelmann H, Aderka D, Rubinstein M, et al (1989) A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J Biol Chem 264: 11974–11980

    PubMed  CAS  Google Scholar 

  21. Dinarello CA, Thompson RC (1991) Blocking IL-1: interleukin-1 receptor antagonist in vivo and in vitro. Immunol Today 12: 404–410

    Article  PubMed  CAS  Google Scholar 

  22. Lipton JM, Catania A (1998) Mechanisms of anti-inflammatory actions of the neuroimmunomodulatory peptide a-MSH. Ann NY Acad Sci 840: 373–380

    Article  PubMed  CAS  Google Scholar 

  23. Cooper KE, Naylor AM, Veale WL (1987) Evidence supporting a role for endogenous vasopressin in fever suppression in the rat. J Physiol (Lond) 387: 163–172

    CAS  Google Scholar 

  24. Cannon JG, Tatro JB, Reichlin S, et al (1986) Alphamelanocyte stimulating hormone inhibits immunostimulatory and inflammatory actions of interleukin 1. J Immunol 137: 2232–2236

    PubMed  CAS  Google Scholar 

  25. Dinarello CA, Dempsey RA, Allegretta M, et al (1986) Inhibitory effects of elevated temperature on human cytokine production and natural killer activity. Cancer Res 46: 6236–6241

    PubMed  CAS  Google Scholar 

  26. Hasday JD (1997) The influence of temperature on host defenses. In: Mackowiak PA (ed) Fever, basic mechanisms and management, 2nd edn. Lippincott-Raven, Philadelphia, pp 177–196

    Google Scholar 

  27. Hori T, Katafuchi T (1998) Cell biology and the functions of thermosensitive neurons in the brain. Prog Brain Res 115: 9–23

    Article  PubMed  CAS  Google Scholar 

  28. Van Dam AM, Bauer J, Tilders FJH, et al (1995) Endotoxin-induced appearance of immunoreactive interleukin-113 in ramified microglia in rat brain: a light and electron microscopic study. Neuroscience 65: 815–826

    Article  PubMed  Google Scholar 

  29. Wong ML, Al-Shekhlee A, Gold PW, et al (1996) Cytokines in the brain. In: Rothwell NJ (ed) Cytokines in the nervous system. Springer, Heidelberg, pp 3–20

    Chapter  Google Scholar 

  30. Nguyen KT, Deak T, Owens SM, et al (1998) Exposure to acute stress induces brain interleukin-13 protein in the rat. J Neurosci 18: 2239–2246

    PubMed  CAS  Google Scholar 

  31. Rothwell NJ, Strijbos PJM (1995) Cytokines in neurodegeneration and repair. Int J Dev Neurosci 13: 179–185

    Article  PubMed  CAS  Google Scholar 

  32. Banks WA, Ortiz L, Plotkin SR, et al (1991) Human interleukin(IL)-1a and murine IL-13 are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 259: 988–996

    PubMed  CAS  Google Scholar 

  33. Wong ML, Licinio J (1994) Localization of interleukin 1 type I receptor mRNA in rat brain. Neuroimmunomodulation 1: 110–115

    Article  PubMed  CAS  Google Scholar 

  34. Van Dam AM, De Vries HE, Kuiper J, et al (1996) Interleukin-1 receptors on rat brain endothelial cells: a role in neuroimmune interaction? FASEB J 10: 351–356

    PubMed  Google Scholar 

  35. Kilbourn RG, Belloni P (1990) Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst 82: 772–776

    Article  PubMed  CAS  Google Scholar 

  36. Stitt J (1986) Prostaglandin E as the neural mediator of the febrile response. Yale J Biol Med 59: 137–149

    CAS  Google Scholar 

  37. Ota K, Takaki K, Katafuchi T, et al (1993) The AV3V neurons which send axons to hypothalamic nuclei respond to the systemic injection of IL-113. Am J Physiol 272: R532 - R540

    Google Scholar 

  38. Komaki G, Arimura A, Koves K (1992) Effect of intravenous injection of interleukin-113 on prostaglandin E2 levels in several brain areas as determined by microdialysis. Am J Physiol 262: E246 - E251

    PubMed  CAS  Google Scholar 

  39. Oka K, Oka T, Hori T (1997) Prostaglandin E2 may induce hyperthermia through EP1 receptor in the anterior wall of the third ventricle and neighboring preoptic regions. Brain Res 767: 92–99

    Article  PubMed  CAS  Google Scholar 

  40. Matsuda T, Hori T, Nakashima T (1992) Thermal and PGE2 sensitivity of the organum vasculosum lamina terminalis region and preoptic area in rat brain slices. J Physiol (Lond) 454: 213–230

    Google Scholar 

  41. Matsumura K, Watanabe Y, Onoe H, et al (1990) High density of prostaglandin E2 binding sites in the anterior wall of the 3rd ventricle: a possible site of its hyperthermic action. Brain Res 533: 147–151

    Article  PubMed  CAS  Google Scholar 

  42. Brady LS, Lynn AB, Herkenham M, et al (1994) Systemic interleukin-1 induces early and late patterns of c-fos mRNA expression in brain. J Neurosci 4: 4951–4964

    Google Scholar 

  43. Niijima A (1992) The afferent discharges from sensors for interleukin-1 ß in the hepatoportal system in the anaesthetized rat. J Physiol (Camb) 446: 236 P

    Google Scholar 

  44. Watkins LR, Maier SF, Goehler LE (1995) Cytokines-to-brain communication: a review and analysis of alternative mechanisms. Life Sei 57: 1011–1026

    Article  CAS  Google Scholar 

  45. Wit A, Wang SC (1968) Temperature sensitive neurons in preoptic/anterior hypothalamic region: actions of pyrogen and acetylsalicylate. Am J Physiol 215: 1160–1169

    PubMed  CAS  Google Scholar 

  46. Hori T, Shibata M, Nakashima T, et al (1988) Effects of interleukin-1 and arachidonate on the preoptic and anterior hypothalamic neurons. Brain Res Bull 20: 75–82

    Article  PubMed  CAS  Google Scholar 

  47. Nakashima T, Hori T, Morí T, et al (1989) Recombinant human interleukin-1 ß alters the activity of preoptic ther-mosensitive neurons in vitro. Brain Res Bull 23: 209–213

    Article  PubMed  CAS  Google Scholar 

  48. Nakashima T, Kiyohara T, Hori T (1991) Tumor necrosis factor-ß specifically inhibits the activity of preoptic warm-sensitive neurons in tissue slices. Brain Res 128: 97–100

    CAS  Google Scholar 

  49. Mizuno K, Hori T, Nakashima T, et al (1989) Responsiveness of hypothalamic neurones and immunological cells to immune cytokines. Jpn J Physiol 39: S275

    Google Scholar 

  50. Kuriyama K, Hori T, Mori T, et al (1990) Actions of interferon-« and interleukin-1 ß on the glucose responsive neurons in the ventromedial hypothalamus. Brain Res Bull 24: 803–810

    Article  PubMed  CAS  Google Scholar 

  51. Xin L, Blatteis CL (1992) Blockade by interleukin-1 receptor antagonist of IL-lß-induced neuronal activity in guinea pig preoptic area slices. Brain Res 569: 348–352

    Article  PubMed  CAS  Google Scholar 

  52. Kluger MJ, Kozak W, Conn CA, et al (1997) The adaptive value of fever. In: Mackowiak PA (ed) Fever, basic mechanisms and management, 2nd edn. Lippincott-Raven, Philadelphia, pp 255–266

    Google Scholar 

  53. Covert JB, Reynolds WW (1977) Survival value of fever in fish. Nature (Lond) 267: 43–45

    Article  CAS  Google Scholar 

  54. Blatteis CM (1986) Fever: is it beneficial? Yale J Biol Med 59: 107–116

    PubMed  CAS  Google Scholar 

  55. Ashman RB, Mullbacher A (1984) Infectious disease, fever, and the immune response. Immunol Today 5: 268–271

    Article  Google Scholar 

  56. Kluger MJ, Rothenburg BA (1979) Fever and reduced iron: their interaction as a host defense response to bacterial infection. Science 203: 374–376

    Article  PubMed  CAS  Google Scholar 

  57. Hales JRS (1996) Heat-induced conflict between and within autonomic activities. In: Shiraki K, Sagawa S, Yousef MK (eds) Physiological basis of occupational health: stressful environments. SPB Academic, Amsterdam, pp 3–12

    Google Scholar 

  58. Duff GW (1986) Is fever beneficial to the host: a clinical perspective. Yale J Biol Med 59: 125–130

    PubMed  CAS  Google Scholar 

  59. Mackowiak PA (1994) Fever: blessing or curse? A unifying hypothesis. Ann Intern Med 120: 1037–1040

    PubMed  CAS  Google Scholar 

  60. Hamilton WD (1964) The genetical evolution of social behavior. I and II. J Theor Biol 7: 1–52

    Article  PubMed  CAS  Google Scholar 

  61. Mackowiak PA (1981) Direct effects of hyperthermia on pathogenic microorganisms: teleologic implications with regard to fever. Rev Infect Dis 3: 508–520

    Article  PubMed  CAS  Google Scholar 

  62. Dinarello CA (1984) Interleukin-1. Rev Infect Dis 6: 52–95

    Google Scholar 

  63. Roberts NJ Jr (1991) Impact of temperature elevation on immunologic defenses. Rev Infect Dis 13: 462–272

    Article  PubMed  Google Scholar 

  64. Ashman RB, Nahmias AJ (1977) Enhancement of human lymphocyte responses to phytomitogens in vitro by incubation at elevated temperatures. Clin Exp Immunol 29: 464–467

    PubMed  CAS  Google Scholar 

  65. Smith JB, Knowlton RP, Agarwal SS (1978) Human lymphocyte responses are enhanced by culture at 40°C. J Immunol 121: 691–694

    PubMed  CAS  Google Scholar 

  66. Hanson DF, Murphy PA (1985) Temperature sensitivity of interleukin-dependent murine T cell proliferation: Q2 mapping of the responses of peanut agglutinin-negative thymocytes. J Immunol 135: 3011–3020

    PubMed  CAS  Google Scholar 

  67. Saririan K, Nickerson DA (1982) Enhancement of murine in vitro antibody formation by hyperthermia. Cell Immunol 74: 306–312

    Article  PubMed  CAS  Google Scholar 

  68. Jampel HD, Duff GW, Gershon RK, et al (1983) Fever and immunoregulation. III. Hyperthermia augments the primary in vitro humoral immune response. J Exp Med 157: 1229–1238

    Article  PubMed  CAS  Google Scholar 

  69. MacDonald HR (1977) Effect of hyperthermia on the functional activity of cytotoxic T-lymphocytes. J Natl Cancer Inst 59: 1263–1268

    PubMed  CAS  Google Scholar 

  70. Nahas GG,Tannieres ML, Lennon JF (1971) Direct measurement of leukocyte motility: effects of pH and temperature. Proc Soc Exp Biol Med 138: 350–352

    Google Scholar 

  71. Van Oss CJ, Absolom DR, Moore LL, et al (1980) Effect of temperature on the Chemotaxis, phagocytic engulf–ment, digestion and 02 consumption of human polymorphonuclear leukocytes. J Reticuloendothel Soc 27: 561–565

    PubMed  Google Scholar 

  72. Van Dijk H, Rademaker PM (1985) Infectious disease, fever and the immune response. Immunol Today 6: 3–18

    Google Scholar 

  73. Kalland T, Dahlquist I (1983) Effects of in vitro hyperthermia on human natural killer cells. Cancer Res 48: 1842–1846

    Google Scholar 

  74. Kaizuka Y, Mori T, Hori T (1990) Effects of temperature on the cytotoxic activity of natural killer cells in the rat spleen. Jpn J Physiol 40 (suppl): S227

    Google Scholar 

  75. Berg RD (1995) Bacterial translocation from the gastrointestinal tract. Trends Microbiol 3: 149–154

    Article  PubMed  CAS  Google Scholar 

  76. Gathiram P, Wells MT, Raidoo D, et al (1988) Portal and systemic arterial plasma lipopolysaccharide concentration in the heat stressed primate. Clin Shock 25: 223–230

    CAS  Google Scholar 

  77. Anderlik P, Szeri I, Banos Z, et al (1990) Bacerial translocation after cold stress in young and old mice. Acta Microbiol Hung 37: 289–294

    PubMed  CAS  Google Scholar 

  78. Jiang J, Bahrami S, Leichtfried G, et al (1995) Kinetics of endotoxin and tumor necrosis factor appearance in portal and systemic circulation after hemorrhage shock in rats. Ann Surg 221: 100–106

    Article  PubMed  CAS  Google Scholar 

  79. Bouchama A, Paarhar RS, Er-Yazigi A, et al (1991) Endo-toxemia and release of tumor necrosis factor and interleukin-1 alpha in acute heat stroke. J Appl Physiol 70: 2640–2644

    PubMed  CAS  Google Scholar 

  80. Takaki A, Shioda S, Ito K, et al (1998) Non-inflammatory stress and brain-gut-liver-immune axis. In: Oomura Y, Hori T (eds) Brain and biodefence. Japanese Science Society Press/Karger, Tokyo/Basel, pp 155–160

    Google Scholar 

  81. Takaki A, Huang GH, Somogyvari-Vigh A, et al (1994) Immobilization stress increases plasma interleukin-6 via central and peripheral catecholamines. Neuroimmuno-modulation 1: 335–342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Hori, T., Kaizuka, Y., Takaki, A., Katafuchi, T. (2001). Thermal Stress and Immunity. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_27

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics