Skip to main content

Endocrine Responses to Heat and Cold Stress

  • Chapter

Summary

This review focuses on the endocrine responses to thermal stimuli during passive heat or cold exposure, with particular reference to the relation of these responses to the changes in the body core temperature (T core). Mild to moderate hyperthermia (<1°C rise in T core) induces the release of growth hormone and prolactin (PRL). Moderate hypothermia (1°–2°C fall in T core) suppresses PRL release. A positive correlation between plasma PRL and T core suggests some role for PRL in thermoregulation. Hypothermia activates the hypothalamo-pituitary-thyroid (HPT) axis and releases thyrotropin-releasing hormone, thyroid-stimulating hormone (TSH), and thyroid hormones and increases the metabolic rate. Enhancement of extrathyroidal production of triiodothyronine (T3) from thyroxine (T4) may precede the TSH response to cold. Both severe hyperthermia and hypothermia (1°–3°C changes in T core) activate the hypothalamo-pituitary-adrenal (HPA) axis and the sympathetic nervous system, resulting in release of corticotropin-releasing factor, adrenocorticotropic hormone, cortisol, and norepinephrine. The responses in the HPT axis and the HPA axis are not apparent in humans, as they are in rats, probably owing to the larger body mass of humans. Hyperthermia stimulates the renin-angiotensin-aldosterone system and the release of arginine vasopressin (AVP) and atrial natriuretic peptide, but this might be due to nonthermal factors. Diuresis due to suppression of AVP release is induced by cold. Gonadal response to thermal stimuli is possibly suppressive. The hormonal responses induced by thermal stress are mostly dependent on the change in T core in humans; in small animals they are also dependent on the change in skin temperature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Francesconi RP (1996) Endocrinological and metabolic responses to acute and chronic heat exposure. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology, section 4: environmental physiology, vol 1. Oxford University Press, New York, pp 245–260

    Google Scholar 

  2. Radomski MW, Cross M, Buguet A (1998) Exercise-induced hyperthermia and hormonal responses to exercise. Can J Physiol Pharmacol 76: 547–552

    Article  PubMed  CAS  Google Scholar 

  3. Brenner I, Shek PN, Zamecnik J, et al (1998) Stress hormones and immunological responses to heat and exercise. Int J Sports Med 19: 130–143

    Article  PubMed  CAS  Google Scholar 

  4. Leppäluoto J, Ranta T, Laisi U, et al (1975) Strong heat exposure and adrenohypophyseal hormone secretion in man. Horm Metab Res 7: 439–440

    Article  PubMed  Google Scholar 

  5. Okada Y, Matsuoka T, Kumahara.Y (1972) Human growth hormone secretion during exposure to hot air in normal adult male subjects. J Clin Endocrinol 34: 759–763

    CAS  Google Scholar 

  6. Kappel M, Gyhrs A, Galbo H, et al (1997) The response on glucoregulatory hormones of in vivo whole body hyperthermia. Int J Hyperthermia 13: 413–421

    Article  PubMed  CAS  Google Scholar 

  7. Wier N, Beckwith R, Butler PC, et al (1989) Metabolic and hormonal responses to exogenous hyperthermia in man. Clin Endocrinol (Oxf) 30: 651–660

    Article  Google Scholar 

  8. Jokinen E, Välimäki I, Marniemi J, et al (1991) Children in sauna: hormonal adjustments to intensive short thermal stress. Acta Physiol Scand 142: 437–442

    Article  PubMed  CAS  Google Scholar 

  9. Brandenberger G, Follenius M, Enguelle SO (1979) Responses of anterior pituitary hormones to heat exposure. J Endocrinol Invest 2: 297–298

    PubMed  CAS  Google Scholar 

  10. Matsumoto T, Kosaka M, Ohwatari N, et al (1989) Influence of thermal stimuli on serum prolactin level in men. In: Mercer JB (ed) Thermal Physiology 1989. Elsevier Science, Amsterdam, pp 369–374

    Google Scholar 

  11. Leppäluoto J, Tapanainen P, Knip M (1987) Heat exposure elevates plasma immunoreactive growth hormone-releasing hormone levels in man. J Clin Endocrinol Metab 65: 1035–1038

    Article  PubMed  Google Scholar 

  12. Cross MC, Radomski MW, VanHelder WP, et al (1996) Endurance exercise with and without a thermal clamp: effects on leukocytes and leukocyte subsets. J Appl Physiol 81: 822–829

    PubMed  CAS  Google Scholar 

  13. Brenner IKM, Zamecnik J, Shek PN, et al (1997) The impact of heat exposure and repeated exercise on circulating stress hormones. Eur J Appl Physiol 76: 445–454

    Article  CAS  Google Scholar 

  14. Kappel M, Poulsen TD, Hansen MB, et al (1998) Somatostatin attenuates the hyperthermia induced increase in neutrophil concentration. Eur J Appl Physiol 77: 149–156

    Article  CAS  Google Scholar 

  15. Weeke J, Gundersen HJG (1983) The effect of heating and central cooling on serum TSH, GH, and norepinephrine in resting normal man. Acta Physiol Scand 117: 33–39

    Article  PubMed  CAS  Google Scholar 

  16. Hargreaves M, Angus D, Howlett K, et al (1996) Effect of heat stress on glucose kinetics during exercise. J Appl Physiol 81: 1594–1597

    PubMed  CAS  Google Scholar 

  17. Shapiro LE, Katz CP, Wasserman SHS, et al (1991) Heat stress and hydrocortisone are independent stimulators of triiodothyronine-induced growth hormone production in cultured rat somatotropic tumor cells. Acta Endocrinol (Copenh) 124: 417–424

    CAS  Google Scholar 

  18. Fisker S, Otto J, Jorgensen J, et al (1998) L-Arginine and insulin-tolerance tests in diagnosis of adult growth hormone deficiency: influence of confounding factors. Clin Endocrinol (Oxf) 48: 109–115

    Article  CAS  Google Scholar 

  19. Bauer M, Caroff S, Winokur A, et al (1987) Neuroendocrine responses to cold stress in normal subjects and depressives. Psychoneuroendocrinology 12: 483–490

    Article  PubMed  CAS  Google Scholar 

  20. Ozawa A, Johke T, Hodate K (1994) Plasma insulin-like growth factor-I response to cold exposure in barrows. Endocr J 41: 725–730

    Article  PubMed  CAS  Google Scholar 

  21. Okada Y, Miyai K, Iwatsubo H, et al (1970) Human growth hormone secretion in normal adult subjects during and after exposure to cold. J Clin Endocrinol 30:393–395

    Google Scholar 

  22. Buckler JMH (1973) The relationship between changes in plasma growth hormone levels and body temperature occurring with exercise in man. Biomedicine 190: 193–197

    Google Scholar 

  23. Rauhala P, Idänpään-Heikkilä JJ, Lang A, et al (1995) Cold exposure attenuates effects of secretagogues on serum prolactin and growth hormone levels in male rats. Am J Physiol 268: E758 - E765

    PubMed  CAS  Google Scholar 

  24. Maxwell M, Allegra C, MacGillivary J, et al (1998) Functional transplantation of the rat pituitary gland. Neurosurgery 43: 1157–1163

    Article  PubMed  CAS  Google Scholar 

  25. Frantz AG (1978) Prolactin. N Engl J Med 298: 201–207

    Article  CAS  Google Scholar 

  26. Kato Y, Matsushita N, Ohta H, et al (1985) Regulation of prolactin secretion. In: Imura H (ed) The pituitary glands. Raven, New York, pp 261–278

    Google Scholar 

  27. Owens RE, Miyai K, Iwatsubo H, et al (1984) The regulation of prolactin secretion. In: Peter MB (ed) Secretory tumors of the pituitary gland (progress in endocrine research and therapy). Raven, New York, pp 1–15

    Google Scholar 

  28. Hinuma S, Habata Y, Fujii R, et al (1998) A prolactinreleasing peptide in the brain. Nature 393: 272–276

    Article  PubMed  CAS  Google Scholar 

  29. Noel GL, Suh HK, Stone JG, et al (1972) Human prolactin and growth hormone release during surgery and other condition of stress. J Clin Endocrinol Metab 35: 840–851

    Article  PubMed  CAS  Google Scholar 

  30. Jezovâ D, Kvetnanskÿ R,Vigas M (1994) Sex differences in endocrine response to hyperthermia in sauna. Acta Physiol Scand 150: 293–298

    Article  Google Scholar 

  31. Laatikainen T, Salminen K, Kohvakka A, et al (1988) Response to plasma endorphins, prolactin and catecholamines in women to intense heat in a sauna. Eur J Appl Physiol 57: 98–102

    Article  CAS  Google Scholar 

  32. Vescovi PP, Pedrazzoni M, Michelini M, et al (1990) Impaired prolactin response to hyperthermia in heroin addicts. Acta Endocrinol (Copenh) 123: 619–621

    CAS  Google Scholar 

  33. Vescovi PP, Pedrazzoni M, Michelini M, et al (1992) Impaired PRL response to hyperthermia in alcoholic men. Neuropeptides 22: 205–207

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto T, Kosaka M, Yamauchi M, et al (1988) Response of serum prolactin to thermal stress during water immersion. Trop Med 30: 247–250

    Google Scholar 

  35. Brisson GR, Péronnet F, Perrault H, et al (1991) Prolactinotrophic effect of endogenous and exogenous heat loads in human male adults. J Appl Physiol 70: 1351–1355

    PubMed  CAS  Google Scholar 

  36. Brisson GR, Bouchard J, Péronnet F, et al (1987) Evidence for an interference of selective face ventilation on hyperprolactinemia induced by hyperthermic treadmill running. Int J Sports Med 8: 387–391

    Article  PubMed  CAS  Google Scholar 

  37. Follenius M, Brandenberger G, Simeoni M, et al (1979) Plasma aldosterone, prolactin and ACTH: relationships in man during heat exposure. Horm Metab Res 11: 180–181

    Article  PubMed  CAS  Google Scholar 

  38. Brisson GR, Péronnet F, Ledoux M, et al (1986) Temperature-induced hyperprolactinemia during exercise. Horm Metab Res 18: 283–284

    Article  PubMed  CAS  Google Scholar 

  39. Mills DE, Robertshaw D (1981) Response of plasma prolactin to changes in ambient temperature and humidity in man. J Clin Endocrinol Metab 52: 279–283

    Article  PubMed  CAS  Google Scholar 

  40. Brisson GR, Ledoux M, Péronnet F, et al (1981) Prolactinemia in exercising male athletes. Horm Res 15: 218–223

    Article  PubMed  CAS  Google Scholar 

  41. Brisson GR, Audet A, Ledoux M, et al (1986) Exercise-induced blood prolactin variations in trained adult males: a thermic stress more than an osmotic stress. Horm Res 23: 200–206

    Article  PubMed  CAS  Google Scholar 

  42. Brisson GR, Boisvert P, Péronnet F, et al (1989) Face cooling-induced reduction of plasma prolactin response to exercise as part of an integrated response to thermal stress. Eur J Appl Physiol 58: 816–820

    Article  CAS  Google Scholar 

  43. Falk B, Bar-Or O, MacDougall JD (1991) Aldosterone and prolactin response to exercise in the heat in circumpubertal boys. J Appl Physiol 71: 1741–1745

    PubMed  CAS  Google Scholar 

  44. Melin B, Cure M, Pequignot JM, et al (1988) Body temperature and plasma prolactin and norepinephrine relationships during exercise in a warm environment: effect of dehydration. Eur J Appl Physiol 58: 146–151

    Article  CAS  Google Scholar 

  45. Colthorpe KL, Anderson ST, Martin GB, et al (1998) Hypothalamic dopamine Dl receptors are involved in the stimulation of prolactin secretion by environmental temperature in the female sheep. J Neuroendocrinol 10: 503–509

    Article  PubMed  CAS  Google Scholar 

  46. Matsumoto T, Kosaka M, Yamauchi M, et al (1989) Changes in serum prolactin level due to heat and exercise load in athletes. Bull Physical Fitness Res Inst 72: 128–135

    Google Scholar 

  47. Van Vugt DA, Bruni JF, Meites J (1978) Naloxone inhibition of stress-induced increase in prolactin secretion. Life Sci 22: 85–90

    Article  PubMed  Google Scholar 

  48. Mueller GP, Chen HT, Dibbet JA, et al (1974) Effects of warm and cold temperatures on release of TSH, GH, and prolactin in rats. Proc Soc Exp Biol Med 147: 698–700

    PubMed  CAS  Google Scholar 

  49. Gibbs DM (1985) Hypothalamic epinephrine is released into hypophysial portal blood during stress. Brain Res 335: 360–364

    Article  PubMed  CAS  Google Scholar 

  50. Siegel RA, Feldman S, Conforti N, et al (1979) PRL and ACTH secretion following acute heat exposure, in intact and in hypothalamic deafferentated male rats. Brain Res 178: 459–466

    Article  PubMed  CAS  Google Scholar 

  51. Schillo KK, Alliston CW, Malven PV (1978) Plasma concentration of lutenizing hormone and prolactin in the ovariectomized ewe during induced hyperthermia. Biol Reprod 19: 306–313

    Article  PubMed  CAS  Google Scholar 

  52. Klemcke HK, Nieaber JA, Hahn GL (1987) Stressorassociated alterations in porcine plasma prolactin. Proc Soc Exp Biol Metab 186: 333–343

    CAS  Google Scholar 

  53. Tucker HA, Wettemann RP (1976) Effects of ambient temperature and relative humidity on serum prolactin and growth hormone in heifers. Proc Soc Exp Biol Med 151: 623–626

    PubMed  CAS  Google Scholar 

  54. Tucker HA, Chapin LT, Lookingland KJ, et al (1991) Temperature effects on serum prolactin concentrations and activity of dopaminergic neurons in the infundibulum/pituitary stalk of calves. Proc Soc Exp Biol Med 197: 74–76

    PubMed  CAS  Google Scholar 

  55. Smith VG, Hacker RR, Brown RG (1977) Effect of alterations in ambient temperature on serum prolactin concentration in steers. J Anim Sci 44: 645–649

    PubMed  CAS  Google Scholar 

  56. Gerra G, Delsignore R, Maninetti L, et al (1992) Sex-related responses of beta-endorphin, ACTH, GH and PRL to cold exposure in humans. Acta Endocrinol (Copenh) 126: 24–28

    CAS  Google Scholar 

  57. Okuda C, Miyazaki M, Kuriyama K (1986) Hypothalamic control of pituitary and adrenal hormones during hypothermia. Psychoneuroendocrinology 11: 415–427

    Article  PubMed  CAS  Google Scholar 

  58. Yahata T, Kuroshima A (1994) Inhibitory role of prolactin in brown adipose tissue thermogenic activity. Jpn J Biometeor 31: 63–67

    Google Scholar 

  59. Wittert GA, Or HK, Livesey JH, et al (1992) Vasopression, corticotropin-releasing factor, and pituitary adrenal responses to acute cold stress in normal humans. J Clin Endocrinol Metab 75: 750–755

    Article  PubMed  CAS  Google Scholar 

  60. Nasciutti LE, Picart R, Rosenbaum E, et al (1992) Effect of reduced temperatures and brefeldin A on prolactin secretion and on subcellular distribution of the secretory product and membrane antigens in GH3 pituitary cells. Biol Cell 75: 25–35

    Article  PubMed  CAS  Google Scholar 

  61. Matteri RL, Becker BA (1994) Somatotroph, lactotroph and thyrotroph function in three-week-old gilts reared in a hot or cool environment. Domest Anim Endocrinol 11: 217–226

    Article  PubMed  CAS  Google Scholar 

  62. Jobin M, Ferland L, Cote J, et al (1975) Effect of exposure to cold on hypothalamic TRH activity and plasma levels of TSH and prolactin in the rat. Neuroendocrinology 18: 204–212

    Article  PubMed  CAS  Google Scholar 

  63. Jobin M, Ferland L, Labrie F (1976) Effect of pharmacological blockade of ACTH and TSH secretion on the acute stimulation of prolactin release by exposure to cold and ether stress. Endocrinology 99: 146–151

    Article  PubMed  CAS  Google Scholar 

  64. D’eramo JL, Somoza GM, Kertesz E, et al (1986) Baclofen, a GABA derivative, inhibits stress-induced prolactin releases in the rat. Eur J Pharmacol 120: 81–85

    Article  PubMed  Google Scholar 

  65. Männistö PT, Peuranen E, Harro J, et al (1992) Possible role of cholecystokinin-A receptors in regulation of thyrotropin (TSH) secretion in male rats. Neuropeptides 23: 251–258

    Article  PubMed  Google Scholar 

  66. Ragavan VV, Frantz AG (1981) Suppression of serum prolactin by naloxone but not by anti-13-endorphin antiserum in stressed and unstressed rats. Life Sci 28: 921–929

    Article  CAS  Google Scholar 

  67. Chan E, Swaminathan R (1990) Role of prolactin in lactation-induced changes in brown adipose tissue. Am J Physiol 258: R51 - R56

    PubMed  CAS  Google Scholar 

  68. Moore BJ, Gerardo-Gettens T, Horwitz BA, et al (1986) Hyperprolactinemia stimulates food intake in the female rat. Brain Res Bull 17: 563–569

    Article  PubMed  CAS  Google Scholar 

  69. Airoldi M, Gabriele P, Brossa PC, et al (1990) Serum thyroid hormone changes in head and neck cancer patients treated with microwave hyperthermia on lymph node metastasis. Cancer 65: 901–907

    Article  PubMed  CAS  Google Scholar 

  70. Jacobs I, Romet T, Frim J, et al (1984) Effects of endurance fitness on responses to cold water immersion. Aviat Space Environ Med 55: 715–720

    PubMed  CAS  Google Scholar 

  71. Reed HL, Quesada M, Hesslink L Jr, et al (1994) Changes in serum triiodothyronin kinetics and hepatic type I 5’-deiodinase activity of cold-exposed swine. Am J Physiol 266: E786 - E795

    PubMed  CAS  Google Scholar 

  72. Kawashima T, Yano H (1988) The influence of heat exposure (34°C) on bone growth and the level of thyroid hormones in rats. Jpn J Zootech Sci 59: 67–74

    Google Scholar 

  73. Niida H, Takeuchi K, Okabe S (1991) Role of thyrotropin-releasing hormone in acid secretory response induced by lowering of body temperature in the rat. Eur J Pharmacol 198: 137–142

    Article  PubMed  CAS  Google Scholar 

  74. Hefco E, Krulich L, Illner P, et al (1975) Effect of acute exposure to cold on the activity of the hypothalamicpituitary-thyroid system. Endocrinology 97: 1185–1195

    Article  PubMed  CAS  Google Scholar 

  75. Ferland L, Labrie F, Jobin M, et al (1976) Physiological role of somatostatin in the control of growth hormone and thyrotropin secretion. Biochem Biophys Res Commun 68: 149–154

    Article  PubMed  CAS  Google Scholar 

  76. Anguiano B, Aceves C, Navarro L, et al (1991) Neuroendocrine regulation of adrenal 5’-monodeiodination during acute cold exposure in the rat. I. Effects of hypophysectomy. Endocrinology 128: 504–508

    Article  PubMed  CAS  Google Scholar 

  77. Fukuhara K, Kvetnansky R, Cizza G, et al (1996) Interrelations between sympathoadrenal system and hypothalamo-pituitary-adrenocortical/thyroid systems in rats exposed to cold stress. J Neuroendocrinol 8: 533–541

    Article  PubMed  CAS  Google Scholar 

  78. Arancibia S, Tapia-Arancibia L, Assenmacher I, et al (1983) Direct evidence of short-term cold-induced TRH release in the median eminence of unanesthetized rats. Neuroendocrinology 37: 225–228

    Article  PubMed  CAS  Google Scholar 

  79. Silva JE, Larsen PR (1985) Potential of brown adipose tissue type II thyroxine 5’-deiodinase as a local and systemic source of triiodothyronine in rats. J Clin Invest 76: 2296–2305

    Article  PubMed  CAS  Google Scholar 

  80. Scammell JG, Shiverick KT, Fregly MJ (1980) In vitro hepatic deiodination of L-thyroxine to 3,5,3’triiodothyronine in cold-acclimated rats. J Appl Physiol 49: 386–389

    PubMed  CAS  Google Scholar 

  81. Rudas P, Pethes G (1984) The importance of the peripheral thyroid hormone deiodination in adaptation to ambient temperature in the chicken (Gallus domesticus). Comp Biochem Physiol 77A: 567–571

    Article  Google Scholar 

  82. Szabo M, Frohman LA (1977) Suppression of cold-induced thyrotropin secretion by antiserum to thyrotropin-releasing hormone. Endocrinology 101: 1023–1033

    Article  PubMed  CAS  Google Scholar 

  83. Rage F, Lazaro JB, Benyassi A, et al (1994) Rapid changes in somatostatin and TRH mRNA in whole rat hypothalamus in response to acute cold exposure. J Neuroendocrinol 6: 19–23

    Article  PubMed  CAS  Google Scholar 

  84. Zoeller RT, Kabeer N, Albers HE (1990) Cold exposure elevates cellular levels of messenger ribonucleic acid encoding thyrotropin-releasing hormone in paraventricular nucleus despite elevated levels of thyroid hormones. Endocrinology 127: 2955–2962

    Article  PubMed  CAS  Google Scholar 

  85. Uribe RM, Redondo JL, Charli JL, et al (1993) Suckling and cold stress rapidly and transiently increase TRH mRNA in the paraventricular nucleus. Neuroendocrinology 58: 140–145

    Article  PubMed  CAS  Google Scholar 

  86. Ishikawa K, Kakegawa T, Suzuki M (1984) Role of the hypothalamic paraventricular nucleus in the secretion of thyrotropin under adrenergic and cold-stimulated conditions in the rat. Endocrinology 114: 352–358

    Article  PubMed  CAS  Google Scholar 

  87. Arancibia S, Tapia-Arancibia L, Astier H, et al (1989) Physiological evidence for alpha 1-adrenergic facilita-tory control of the cold-induced TRH in the rat, obtained by push-pull cannulation of the median eminence. Neurosci Lett 100: 169–174

    Article  PubMed  CAS  Google Scholar 

  88. Williams DD, Marques P, Illner P, et al (1977) Endocrine responses to cooling of the hypothalamus in goats. In: Fregly MJ, Blatteis CM (eds) Drugs, biogenic amines and body temperature. Karger, Basel, pp 62–65

    Google Scholar 

  89. Khansari DN, Murgo AJ, Faith RE (1990) Effects of stress on the immune system. Immunol Today 11: 170–175

    Article  PubMed  CAS  Google Scholar 

  90. Vescovi PP, Coiro V (1993) Hyperthermia and endorphins. Biomed Pharmacother 47: 301–304

    Article  PubMed  CAS  Google Scholar 

  91. Obminski Z, Stupnicki R (1996) Effect of temperature and pH on the magnitude of the free fraction of cortisol in serum. Exp Clin Endocrinol Diabetes 104: 350–352

    Article  PubMed  CAS  Google Scholar 

  92. Sasaki F, Wu P, Rougeau D, et al (1990) Cytochemical studies of responses of corticotropes and thyrotropes to cold and novel environmental stress. Endocrinology 127: 285–297

    Article  PubMed  CAS  Google Scholar 

  93. Donnerer J, Lembeck F (1990) Different control of the adrenocorticotropin-corticosterone response and of prolactin secretion during cold stress, anesthesia, surgery, and nicotine injection in the rat: involvement of capsaicin-sensitive sensory neurons. Endocrinology 126: 921–926

    Article  PubMed  CAS  Google Scholar 

  94. Hatalski CG, Guirguis C, Baram TZ (1998) Corticotropin releasing factor mRNA expression in the hypothalamic paraventricular nucleus and the central nucleus of the amygdala is modulated by repeated acute stress in the immature rat. J Neuroendocrinol 10: 663–669

    Article  PubMed  CAS  Google Scholar 

  95. Yi SJ, Baram TZ (1994) Corticotropin-releasing hormone mediates the response to cold stress in the neonatal rat without compensatory enhancement of the peptide’s gene expression. Endocrinology 135: 2364–2368

    Article  PubMed  CAS  Google Scholar 

  96. Wu P, Childs GV (1991) Changes in rat pituitary POMC mRNA after exposure to cold or a novel environment, detected by in situ hybridization. J Histochem Cytochem 39: 843–852

    Article  PubMed  CAS  Google Scholar 

  97. Gibbs DM (1985) Inhibition of corticotropin release during hypothermia: the role of corticotropin-releasing factor, vasopressin, and oxytocin. Endocrinology 116: 723–727

    Article  PubMed  CAS  Google Scholar 

  98. Vescovi PP, Gerra G, Pioli G, et al (1990) Circulating opioid peptides during thermal stress. Horm Metab Res 22: 44–46

    Article  PubMed  CAS  Google Scholar 

  99. Hashimoto T, Hisazumi H, Nakajima K, et al (1991) Studies on endocrine changes induced by 8 MHz local radiofrequency hyperthermia in patients with bladder cancer. Int J Hyperthermia 7: 551–557

    Article  PubMed  CAS  Google Scholar 

  100. Sutton JR, Coleman MJ, Casey JH (1976) Testosterone production rate during exercise. In: Landry F, Orban W eds) Biochemistry of exercise, 3rd edn. Karger, Basel, pp 227–234

    Google Scholar 

  101. Obminski Z (1998) Changes in the free (unbound) fraction of testosterone in serum in vitro as affected by pH and temperature. Exp Clin Endocrinol Diabetes 106: 85–88

    Article  PubMed  CAS  Google Scholar 

  102. Donogue DJ, Krueger BF, Hargis BM, et al (1989) Thermal stress reduces serum lutenizing hormone and bioassayable hypothalamic content of lutenizing hormone-releasing hormone in hens. Biol Reprod 41: 419–424

    Article  Google Scholar 

  103. Gilad E, Meidan R, Berman A, et al (1993) Effect of heat stress on tonic and GnRH-induced gonadotropin secretion in relation to concentration of estradiol in plasma of cyclic cows. J Reprod Fertil 99: 315–321

    Article  PubMed  CAS  Google Scholar 

  104. Flowers B, Day BN (1990) Alterations in gonadotropin secretion and ovarian function in prepubertal gilts by elevated environmental temperature. Biol Reprod 42: 465–471

    Article  PubMed  CAS  Google Scholar 

  105. Strutton PH, Coen CW (1996) Sodium pentobarbitone and the suppression of luteinizing hormone pulses in the female eat: the role of hypothermia. J Neuroendocrinol 8: 941–946

    Article  PubMed  CAS  Google Scholar 

  106. Tatar P, Vigas M, Jurcovicova J, et al (1986) Increased glucagon secretion during hyperthermia in a sauna. Eur J Appl Physiol 55: 315–317

    Article  CAS  Google Scholar 

  107. Wilkinson R, Johnson RH (1988) Catecholamine concentrations during exposure of resting man to the heat of a standard sweat test. Clin Exp Pharmacol Physiol 15: 789–793

    Article  PubMed  CAS  Google Scholar 

  108. Frank SM, Higgins MS, Fleisher LA, et al (1997) Adrenergic, respiratory, and cardiovascular effects of core cooling in humans. Am J Physiol 272: R557 - R562

    PubMed  CAS  Google Scholar 

  109. Gisolfi CV, Matthes RD, Kregel KC, et al (1991) Splanchnic sympathetic nerve activity and circulating catecholamines in the hyperthermic rats. J Appl Physiol 70: 1821–1826

    PubMed  CAS  Google Scholar 

  110. Vollmer RR, Baruchin A, Kolibal-Pegher SS, et al (1992) Selective activation of norepinephrine- and epinephrine-secreting chromaffin cells in rat adrenal medulla. Am J Physiol 263: E716 - E721

    Google Scholar 

  111. Tatar P, Vigas M, Jurcovicova J, et al (1985) Impaired glucose utilization in man during acute exposure to environmental heat. Endocrinol Exp (Bratisl) 19: 277–281

    CAS  Google Scholar 

  112. Vallerand AL, Zamecnik J, Jacobs I (1995) Plasma glucose turnover during cold stress in humans. J Appl Physiol 78: 1298–1302

    Google Scholar 

  113. Vallerand AL, Jacobs I (1989) Rates of energy substrates utilization during human cold exposure. Eur J Appl Physiol 58: 873–878

    Article  CAS  Google Scholar 

  114. Vallerand AL, Pérusse F, Bukowiecki LJ (1990) Stimulatory effects of cold exposure and cold acclimation on glucose uptake in rat peripheral tissues. Am J Physiol 259: R1043 - R1049

    Google Scholar 

  115. Okano S, Kikuchi K, Kuroshima A (1993) Alterations of insulin content and insulin binding to plasma membranes in rat brown adipose tissue during cold exposure and cold acclimation. Jpn J Physiol 43: 51–65

    Article  PubMed  CAS  Google Scholar 

  116. Leppäluoto J, Arjamaa O, Vuolteenaho O, et al (1991) Passive heat exposure leads to delayed increase in plasma levels of arterial natriuretic peptide in humans. J Appl Physiol 71: 716–720

    PubMed  Google Scholar 

  117. Follenius M, Candas V, Bothorel B, et al (1989) Effect of rehydration on atrial natriuretic peptide release during exercise in the heat. J Appl Physiol 66: 2516–2521

    PubMed  CAS  Google Scholar 

  118. Kashmeery A (1995) Physiological studies on heat exhaustion victims among Mecca pilgrims. Acta Med Austriaca 22: 16–22

    PubMed  CAS  Google Scholar 

  119. Morgan ML, Anderson RJ, Ellis MA, et al (1983) Mechanism of cold diuresis in the rat. Am J Physiol 244: F210 - F216

    PubMed  CAS  Google Scholar 

  120. Broman M, Källskog Ö, Nygren K, et al (1998) The role of antidiuretic hormone in cold-induced diuresis in the anesthetized rat. Acta Physiol Scand 162: 475–480

    Article  PubMed  CAS  Google Scholar 

  121. Segar WE, Moor WW (1968) The regulation of antidiuretic hormone release in man: effects of change in position and ambient temperature on blood ADH levels. J Clin Invest 47: 2143–2148

    Article  PubMed  CAS  Google Scholar 

  122. Simon-Opperman C, Hammel HT, Simon E (1979) Hypothalamic temperature and osmoregulation in the Pekin duck. Pfluegers Arch 378: 213–221

    Article  Google Scholar 

  123. Salata RA, Verbalis JG, Robinson AG (1989) Cold water stimulation of oropharyngeal receptors in man inhibits release of vasopressin. J Clin Endocrinol Metab 65: 561–567

    Article  Google Scholar 

  124. Dejima Y, Fukuda S, Ichijoh Y, et al (1996) Cold-induced salt intake in mice and catecholamine, renin and thermogenesis mechanism. Appetite 26: 203–219

    Article  PubMed  CAS  Google Scholar 

  125. Cassis L, Laughter A, Fettinger M, et al (1998) Cold exposure regulates the renin-angiotensin system. J Pharmacol Exp Ther 286: 718–726

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Matsumoto, T. et al. (2001). Endocrine Responses to Heat and Cold Stress. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_26

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics