Skip to main content

Application of Heat and Cold: Physiological Responses and Therapeutic Implications

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

Temperature regulation of homeotherms employs nervous receptive and integrative activities and a multitude of nervously or hormonally controlled organ systems that regulate the generation and dissipation of heat. The underlying biological temperature dependence is multifactorial and may alter bodily functions in therapeutically desirable ways. Most of the known therapeutic effects have been empirically established. Physiological temperature actions are discussed that provide a rationale for existing thermotherapies as well as for their further development: temperature-induced autonomic response patterns of different degrees of complexity influencing cardiovascular, visceral, and immune functions; temperature effects on control components of the somatomotor system; temperature dependence of physical tissue properties that are relevant for the performance of the skeletomuscular system; implications of thermoregulatory metabolic control for energy balance; and modulation by temperature of sensors for nonthermal modalities that may affect the perception of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon E, Pierau Fr – K, Taylor DCM (1986) Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev 66: 235 – 300

    PubMed  CAS  Google Scholar 

  2. Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77: 731 – 758

    PubMed  CAS  Google Scholar 

  3. Simon E (1999) Thermoregulation as a switchboard of autonomic nervous and endocrine control. Jpn J Physiol 49: 297 – 323

    Article  PubMed  CAS  Google Scholar 

  4. Simon E, Ludwig O, Vieth E (1986) Are black – box models of thermoregulatory control obsolete? The importance of borrowed knowledge. Yale J Biol Med 59: 349 – 359

    PubMed  CAS  Google Scholar 

  5. Simon E (1974) Temperature regulation: the spinal cord as a site of extrahypothalamic thermoregulatory functions. Rev Physiol Biochem Pharmacol 71: 1 – 76

    Article  PubMed  Google Scholar 

  6. Bruck K, Hinkel P (1990) Thermoafferent networks and their adaptive modifications. In: Schönbaum E, Lomax P (eds) Thermoregulation: physiology and biochemistry. Pergamon, New York, pp 129 – 152

    Google Scholar 

  7. Pierau Fr – K, Wurster RD, Neya T, et al (1980) Generation and processing of peripheral temperature signals in mammals. Int J Biometeorol 24: 243 – 252

    Article  PubMed  CAS  Google Scholar 

  8. Boulant JA (1998) Cellular mechanisms of temperature sensitivity in hypothalamic neurons. In: Sharma HS, Westman J (eds) Brain function in hot environment. Prog Brain Res 115: 3 – 8

    Google Scholar 

  9. Hori T, Katafuchi T (1998) Cell biology and the functions of thermosensitive neurons in the brain. In: Sharma HS, Westman J (eds) Brain function in hot environment. Prog Brain Res 115: 9 – 23

    Google Scholar 

  10. Simon E, Schmid HA, Pehl U (1998) Spinal neuronal thermosensitivity in vivo and in vitro in relation to hypothalamic neuronal thermosensitivity. In: Sharma HS, Westman J (eds) Brain function in hot environment. Prog Brain Res 115: 25 – 47

    Google Scholar 

  11. Jessen C, Feistkorn G (1984) Some characteristics of core temperature signals in the conscious goat. Am J Physiol 247: R456 – R464

    Google Scholar 

  12. Pierau F-K (1996) Peripheral thermosensors. In: Fregly J, Blatteis CM (eds) Environmental physiology. Handbook of physiology, sect 4, vol 1. Oxford University Press, New York, pp 85 – 104

    Google Scholar 

  13. Jessen, C (1990) Thermal afferents in the control of body temperature. In: Schönbaum E, Lomax P (eds) Thermoregulation: physiology and biochemistry. Pergamon, New York, pp 153 – 183

    Google Scholar 

  14. Taylor DCM, Pierau F-K (1991) Nociceptive afferent neurones. In: Winslow W (ed) Studies on Neuroscience, no 14. Manchester University Press, Manchester

    Google Scholar 

  15. Melzak R, Wall PD (1965) Pain mechanisms: a new theory. Science 150: 171 – 179

    Google Scholar 

  16. Fields HL, Basbaum AI (1994) Central nervous system mechanisms of pain modulation. In: Wall PD, Melzak R (eds) Texbook of Pain. Churchill Livingstone, Edinburgh, pp 1237 – 1249

    Google Scholar 

  17. Melzak R (1994) Folk medicine and the sensory modulation of pain. In: Wall PD, Melzak R (eds) Texbook of pain. Churchill Livingstone, Edinburgh, pp 1209 – 1217

    Google Scholar 

  18. Woolf CJ, Thompson JW (1994) Stimulation – induced analgesia: transcutaneous electrical nerve stimulation (TENS) and vibration. In: Wall PD, Melzak R (eds) Texbook of pain. Churchill Livingstone, Edinburgh, pp 1191 – 1208

    Google Scholar 

  19. Besson JM (1997) The complexity of physiopharmacologic aspects of pain (in French). Drugs 53 (suppl 2): 1 – 9

    Article  PubMed  CAS  Google Scholar 

  20. Stamford JA (1995) Descending control of pain. Br J Anesthesiol 75: 217 – 227

    Article  CAS  Google Scholar 

  21. Britton NF, Chaplain MA, Skevington SM (1996) The role of N – methyl – D – aspartate (NMDA) receptors in wind – up: a mathematical model. IMA J Math Appl Med Biol 13: 193 – 205

    Article  PubMed  CAS  Google Scholar 

  22. Xu XJ, Hao JX, Wiesenfeld – Hallin Z (1996) Nociceptin or antinociceptin: potent antinociceptive effect of orphanin FQ/nociceptin in the rat. Neuroreport 7: 2092 – 2094

    PubMed  CAS  Google Scholar 

  23. Sluka KA, Christy MR, Peterson WL, et al (1999) Reduction of pain – related behaviors with either cold or heat treatment in an animal model of acute arthritis. Arch Phys Med Rehabil 80: 313 – 317

    Article  PubMed  CAS  Google Scholar 

  24. Melzak R, Guite S, Gonshor A (1980) Relief of dental pain by ice massage of the hand. Can Med Assoc J 122: 189 – 191

    Google Scholar 

  25. Melzak R, Jeans ME, Stratford JG, et al (1980) Ice massage and transcutaneous electrical stimulation: comparison of treatment for low – back pain. Pain 9: 209 – 217

    Article  Google Scholar 

  26. Jansky L (1995) Humoral thermogenesis and its role in maintaining energy balance. Physiol Rev 75: 237 – 259

    PubMed  CAS  Google Scholar 

  27. Rowell LB (1986) Human circulation: regulation during stress. Oxford University Press, New York, p 416

    Google Scholar 

  28. Iriki M, Simon E (1978) Regional differentiation of sympathetic efferents. In: Ito M,Tsukuhara N, Kubota K,Yagy K (eds) Integrative control functions of the brain, vol 1.

    Google Scholar 

  29. Bisgard JD, Nye D (1940) The influence of hot and cold application upon gastric and intestinal motor activity. Surg Gynecol Obstet 71: 127 – 180

    Google Scholar 

  30. Grayson J (1949) Vascular reactions in the human intestine. J Physiol (Lond) 109: 439 – 447

    CAS  Google Scholar 

  31. Kuntz A (1945) Anatomic and physiologic properties of cutaneo – visceral vasomotor reflex arcs. J Neurophysiol (Bethesda) 8: 421 – 429

    CAS  Google Scholar 

  32. Häbler H - J, Jänig W, Krummel M, et al (1994) Reflex patterns in postganglionic neurons supplying skin and skeletal muscle of the rat hindlimb. J Neurophysiol (Bethesda) 72: 2222 – 2236

    Google Scholar 

  33. Gregor M, Jänig W, Riedel W (1976) Response pattern of cutaneous postganglionic neurones to the hindlimb on spinal cord heating and cooling in the cat. Pflügers Arch 363: 135 – 140

    Article  PubMed  CAS  Google Scholar 

  34. Sugenoya J, Ogawa T, Imai K, et al (1995) Cutaneous vasodilatation responses synchronize with sweat expulsions. Eur J Appl Occup Physiol 71: 33 – 40

    Article  CAS  Google Scholar 

  35. Werner J (1977) Influences of local and global temperature stimuli on the Lewis reaction. Pflügers Arch 367: 291 – 294

    Article  PubMed  CAS  Google Scholar 

  36. Pleschka K, Hashimoto M, Sommerlad U, et al (1987) Distribution of facial and nasal blood flow in the cold loaded dog. J Therm Biol 12: 113 – 117

    Article  Google Scholar 

  37. Kosaka M, Simon E, Thauer R (1967) Shivering in intact and spinal rabbits during spinal cord cooling. Experientia (Basel) 23: 385 – 387

    Article  CAS  Google Scholar 

  38. Kosaka M, Simon E (1968) The central nervous, spinal mechanism of shivering (in German). Pflügers Arch 305: 357 – 373

    Article  Google Scholar 

  39. Sato H (1984) Effect of changes in preoptic temperature on stretch response of muscle spindle endings in the cat’s soleus muscle. Pflügers Arch 402: 144 – 149

    Article  PubMed  CAS  Google Scholar 

  40. Schäfer SS, Schäfer S (1973) The behavior of the proprioceptors of the muscle and the innervation of the fusimotor system during cold shivering. Exp Brain Res 17: 364 – 380

    PubMed  Google Scholar 

  41. Sato H (1983) Effects of skin cooling and warming on stretch responses of the muscle spindle primary and secondary afferent fibers from the cat’s tibialis anterior. Exp Neurol 81: 446 – 458

    Article  PubMed  CAS  Google Scholar 

  42. Klussmann FW (1969) Temperature influence on afferent and efferent motor innervation of the spinal cord. I. Temperature dependence of afferent and efferent spontaneous activities (in German). Pflügers Arch 305: 295315

    Google Scholar 

  43. Thauer R, Simon E (1972) Spinal cord and temperature regulation. In: Ito S, Ogata K, Yoshimura H (eds) Advances in climatic physiology. Igaku Shoin, Tokyo, pp 22 – 49

    Chapter  Google Scholar 

  44. Negrin J (1966) Local hypothermia of the spinal cord for relief of spasticity and rigidity: preliminary observations. Arch Phys Med Rehabil 47: 169 – 173

    PubMed  Google Scholar 

  45. Malkin VA (1978) Selective cooling of the spinal cord and spinal nerve roots in patients with spastic and pain syndromes (in Russian). Zh Voprosy Neirokhirurg INN Burdenko 3: 46 – 50

    Google Scholar 

  46. Mense S (1978) Effects of temperature on the discharges of muscle spindles and tendon organs. Pflügers Arch 374: 159 – 166

    Article  PubMed  CAS  Google Scholar 

  47. Planche E, Jolif M, de Gasquet P, et al (1983) Evidence of a defect in energy expenditure in 7 – day old Zucker rat (fa/fa). Am J Physiol 245: E107 – E113

    PubMed  CAS  Google Scholar 

  48. Körtner G, Petrova O, Vogt S, et al (1994) Sympathetically and nonsympathetically mediated onset of excess fat deposition in Zucker rats. Am J Physiol 267: E947 – E953

    PubMed  Google Scholar 

  49. Stehling U, Döring H, Ertl J, et al (1996) Leptin reduces juvenile fat stores by altering the circadian cycle of energy expenditure. Am J Physiol 371: R1170 – R1174

    Google Scholar 

  50. Lyburn EF (1972) Therapeutic sweating in the treatment of myocardial infarction. Lancet 1 (7758): 1018

    Article  PubMed  CAS  Google Scholar 

  51. Park MM, Hornback NB, Endres S, et al (1990) The effect of whole body hyperthermia on the immune cell activity of cancer patients. Lymphokine Res 9: 213 – 223

    PubMed  CAS  Google Scholar 

  52. Heron I, Berg K (1978) The actions of interferon are potentiated at elevated temperature. Nature (Lond) 274: 508 – 510

    Article  CAS  Google Scholar 

  53. Downing JF, Martinez – Valdez H, Elizondo RS, et al (1988) Hyperthermia in humans enhances interferon – y synthesis and alters the peripheral lymphocyte population. J Interferon Res 8: 143 – 150

    Article  PubMed  CAS  Google Scholar 

  54. Huang YH, Haegerstrand A, Frostegard J (1996) Effect of in vitro hyperthermia on proliferative responses and lymphocyte activity. Clin Exp Immunol 103: 61 – 66

    Article  PubMed  CAS  Google Scholar 

  55. Wang WC, Goldman LM, Schleider DM, et al (1998) Fever – range hyperthermia enhances L – selectin – dependent adhesion of lymphocytes to vascular endothelium. J Immunol 160: 961 – 969

    PubMed  CAS  Google Scholar 

  56. Katafuchi T, Take S, Hori T (1993) Roles of sympathetic nervous system in the suppression of cytotoxicity of splenic natural killer cells in the rat. J Physiol (Lond) 465: 343 – 357

    CAS  Google Scholar 

  57. Esquifino AI, Cardinali DP (1994) Local regulation of the immune response by the autonomic nervous system. Neuroimmunomodulation 1: 265 – 273

    Article  PubMed  CAS  Google Scholar 

  58. Alito A, Romeo HE, Baler R, et al (1987) Autonomic nervous system regulation of murine immune responses as assessed by local surgical sympathetic and parasympathetic denervation. Acta Physiol Pharmacol Latinoam 37:305 – 319

    Google Scholar 

  59. Antonica A, Magni F, Mearini L, et al (1994) Vagal control of lymphocyte release from rat thymus. J Auton Nery Syst 48: 187 – 197

    Article  CAS  Google Scholar 

  60. Niijima A, Hori T, Katafuchi T, et al (1995) The effect of interleukin 113 on the efferent activity of the vagus nerve to thymus. J Auton Nery Syst 54: 137 – 144

    Article  CAS  Google Scholar 

  61. Arce A, Castillon P, Cardinali DP, et al (1997) Effect of local autonomic denervation on in vivo responsiveness of lymphocytes from rat submaxillary lymph nodes. J Auton Nery Syst 62: 155 – 162

    Article  CAS  Google Scholar 

  62. Kullmann R, Schönung W, Simon E (1970) Antagonistic changes of blood flow and sympathetic activity in different vascular beds following central thermal stimulation. I. Blood flow in skin, muscle and intestine during spinal cord heating and cooling in anesthetized dogs. Pflügers Arch 319: 146 – 161

    Google Scholar 

  63. Walther O-E, Iriki M, Simon E (1970) Antagonistic changes of blood flow and sympathetic activity in different vascular beds following central thermal stimulation. II. Cutaneous and visceral sympathetic activity during spinal cord heating and cooling in anesthetized rabbits and cats. Pflügers Arch 319: 162 – 184

    Google Scholar 

  64. Riedel W, Kozawa E, Iriki M (1982) Renal and cutaneous vasomotor and respiratory rate adjustments to peripheral cold and warm stimuli and to bacterial endotoxin in conscious rabbits. J Auton Nery Syst 5: 177 – 194

    Article  CAS  Google Scholar 

  65. Iriki M (1988) Fever and fever syndrome—current problems. Jpn J Physiol 38: 233 – 250

    Article  PubMed  CAS  Google Scholar 

  66. Niijima A, Hori T, Aou S, et al (1991) The effects of interleukin 1ß on the activity of adrenal, splenic and renal sympathetic nerves in the rat. J Auton Nery Syst 36: 183192

    Google Scholar 

  67. Iriki M, Saigusa T (1998) Regional differentiation of sympathetic efferents during fever. In: Sharma HS, Westman J (eds) Brain function in hot environment. Prog Brain Res 115: 477 – 497

    Google Scholar 

  68. Take S, Mori T, Katafuchi T, et al (1993) Central interferon — a inhibits natural killer cytotoxicity through sympathetic innervation. Am J Physiol 265: R453 – R459

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Simon, E., Kosaka, M. (2001). Application of Heat and Cold: Physiological Responses and Therapeutic Implications. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics