Skip to main content

Induced Hypothermia in Cardiovascular and Brain Surgery

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

Clinical application of induced hypothermia for brain protection has expanded in recent years. There are many developments in laboratory and clinical investigations relevant to the relationship between neuronal death and brain temperature. Decreases in metabolic rate, tissue oxygen consumption, and energy demand most likely play less important roles in brain protection from ischemia, whereas more important possible mechanisms for brain protection include effects on excitatory neurotransmissions, intracellular calcium flux, membrane lipid peroxidation, free radical reactions, and permeability of the blood-brain barrier. Induced hypothermia has been applied to cardiovascular surgery and cerebral aneurysm surgery. In the intensive care unit, induced hypothermia has been applied to patients with traumatic brain injury, cerebral infarction, and subarachnoidal hemorrhage and after cardiopulmonary resuscitation. As hypothermia is not a physiological state, adverse effects would appear in cardiovascular, respiratory, coagulatory, immunological, metabolic, and other functions. Adequate indication, exact monitoring, temperature control, sufficient care, and an educated team are mandatory to maintain patient condition in a stable fashion and to avoid the complications associated with hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fey T (1943) Observations on generalized refrigeration in cases of severe cerebral trauma. Assoc Res Nery Ment Dis Proc 24: 611–619

    Google Scholar 

  2. Bigelow WG, Lindsay WK, Harrison RA, et al (1950) Oxygen transport and utilization in dogs at low body temperature. Am J Physiol 160: 125–147

    PubMed  CAS  Google Scholar 

  3. Bigelow WG, Lindsay WK, Greenwood WF (1950) Hypothermia. Its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low temperatures. Ann Surg 132: 846–866

    Google Scholar 

  4. Rosomoff HL, Holaday DA (1954) Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am J Physiol 179: 85–88

    PubMed  CAS  Google Scholar 

  5. Busto R, Dietrich WD, Globus MY, et al (1987) Small differences in ischemic brain temperature critically determine the effect of ischemic neuronal injury. J Cereb Blood Flow Metab 7: 729–738

    Article  PubMed  CAS  Google Scholar 

  6. Mitani A, Kataoka K (1996) Critical levels of extracellular glutaminate mediating gerbil hippocampal delayed neuronal death during hypothermia: brain microdialysis study. Neuroscience 42: 661–670

    Article  Google Scholar 

  7. Winfree CJ, Baker CJ, Connolly ES Jr, et al (1996) Mild hypothermia reduces penumbral glutamate levels in the rat permanent focal cerebral ischemia model. Neurosurgery 38: 1216–1222

    PubMed  CAS  Google Scholar 

  8. Mitani A, Kadoya F, Kataoka K (1991) Temperature dependence of hypoxia-induced calcium accumulation in gerbil hippocampal slices. Brain Res 562: 159–163

    Article  PubMed  CAS  Google Scholar 

  9. Cardell M, Boris-Moller F, Wieloch T (1991) Hypothermia prevents the ischemia-induced translocation and inhibition of protein kinase C in the rat striatum. J Neurochem 57: 1814–1817

    Article  PubMed  CAS  Google Scholar 

  10. Busto R, Globus MY, Neary JT, et al (1994) Regional alternations of protein kinase C activity following transient cerebral ischemia: effects of intraischemic brain temperature modulation. J Neurochem 63: 1095–1103

    Article  PubMed  CAS  Google Scholar 

  11. Churn SB, Taft WC, Billingsley MS, et al (1990) Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin-dependent protein kinase II in gerbils. Stroke 21: 1715–1721

    Article  PubMed  CAS  Google Scholar 

  12. Hu B-R, Kamme F, Wieloch T (1995) Alterrations of Cat`/calmodulin-dependent protein kinase II and its messenger RNA in the rat hippocampus following normo- and hypothermic ischemia. Neuroscience 68: 1003–1016

    Article  PubMed  CAS  Google Scholar 

  13. Hall ED, Andrus PK, Althaus JS, et al (1993) Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain, J Neurosci Res 34: 107–112

    Article  PubMed  CAS  Google Scholar 

  14. Dawson VL, Dawson TM, Bartley DA, et al (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13: 2651–2661

    PubMed  CAS  Google Scholar 

  15. Kader A, Frazzini VI, Baker CJ, et al (1994) Effect of mild hypothermia on nitric oxide synthesis during focal cerebral ischemia. Neurosurgery 35: 272–277

    Article  PubMed  CAS  Google Scholar 

  16. Kil HY, Zhang J, Piantadosi CA (1996) Brain temperature alters hydoxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab 16: 100–106

    Article  PubMed  CAS  Google Scholar 

  17. Dietrich WD, Busto R, Halley M, et al (1990) The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol 49: 486–497

    Article  PubMed  CAS  Google Scholar 

  18. Karibe H, Zarow GJ, Graham SH, et al (1994) Mild intraischemia hypothermia reduces postischemic hyper-perfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 14: 620–627

    Article  PubMed  CAS  Google Scholar 

  19. Jurkovich GJ, Greiser WB, Luterman A, et al (1987) Hypothermia in trauma victims: an ominous predictor of survival. J Trauma 27: 1019–1024

    Article  PubMed  CAS  Google Scholar 

  20. Luna GK, Maier RV, Pavlin EG, et al (1987) Incidence and effect of hypothermia in seriously injured patients. J Trauma 27: 1014–1018

    Article  PubMed  CAS  Google Scholar 

  21. Frank SM, Beattie C, Christpherson R, et al (1993) Unintentional hypothermia is associated with postoperative myocardial ischemia. The Perioperative Ischemia Randomized Anesthesia Trial Study Group. Anesthesiology 78: 468–476

    Google Scholar 

  22. Vareli CR, Khabbaz K, Khuri SF, et al (1992) Effect of skin temperature on platelet function in patients undergoing extracorporeal bypass. J Thorac Cardiovasc Surg 104: 108–116

    Google Scholar 

  23. Valeri CR, Feingold H, Cassidy G, et al (1987) Hypothermia-induced reversible platelet dysfunction. Ann Surg 205: 175–181

    Article  PubMed  CAS  Google Scholar 

  24. Sheffield CW, Sessler DI, Hunt TY (1994) Mild hypothermia during isoflurane anesthesia decreases resistance to E. coli dermal infection in guinea pig. Acta Anesthesiol Scand 38: 201–205

    Article  CAS  Google Scholar 

  25. Sheffield CW, Sessler DI, Hunt TY (1994) Mild hypothermia during halothane-induced anesthesia decreases resistance to Staphylococcus aureus dermal infection in guinea pig. Wound Repair Regen 2: 48–56

    Article  PubMed  CAS  Google Scholar 

  26. Bigger WD, Bohn DJ, Kent G, et al (1984) Neutrophil migration in vitro and in vivo during hypothermia. Infect Immun 46: 857–859

    Google Scholar 

  27. Carli F, Emery PW, Freemantle CA (1989) Effect of perioperative normothermia on postoperative protein metabolism in elderly patients undergoing hip surgery. Br J Anaesth 63: 276–282

    Article  PubMed  CAS  Google Scholar 

  28. Heier T, Caldwell JE, Sessler DI, et al (1991) Mild intra-operative hypothermia increases duration of action and spontenous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology 74: 815–819

    Article  PubMed  CAS  Google Scholar 

  29. Heier T, Caldwell JE, Eriksson LI, et al (1994) The effect of hypothermia on adductor pollicis twitch tension during continuous infusion of vecuronium in isofluraneanesthetized humans. Anesth Analg 78: 312–317

    Article  PubMed  CAS  Google Scholar 

  30. Heier T, Caldwell JE, Sessler DI, et al (1990) The effect of local surface and central cooling on adductor pollicis twitch tension during nitrous oxide/isoflurane and nitrous oxide/fentanyl anesthesia in humans. Anesthesiology 72: 807–811

    Article  PubMed  CAS  Google Scholar 

  31. Heier T, Caldwell JE, Sessler DI, et al (1989) The relationship between adductor pollicis twitch tension and core, skin, and muscle temperature during nitrous oxideisoflurane anesthesia in humans. Anesthesiology 71: 381384

    Google Scholar 

  32. Joachimsson PO, Nystrom SO, Tyden H (1989) Postoperative ventilatory and circulatory effects of extended rewarming during cardiopulmonary bypass. Can J Anaesth 36: 9–19

    Article  PubMed  CAS  Google Scholar 

  33. Bay J, Nunn JG, Prys-Roberts C (1968) Factors influencing arterial P02 during recovery from anesthesia. Br J Anaesth 40: 398–407

    Article  PubMed  CAS  Google Scholar 

  34. Schubert A (1995) Symposium article: side effect of mild hypothermia. J Neurosurg Anesthesiol 7: 139–147

    Article  PubMed  CAS  Google Scholar 

  35. Begelow WG, Callaghan JC, Hopps JA (1950) General hypothermia for experimental intracardiac surgery. Ann Surg 132: 531–539

    Article  Google Scholar 

  36. Lewis FJ, Taufic M, Min M (1952) Closure of atrial defect with the aid of hypothermia: experimental accomplishment and the report of one successful case. Surgery ( St. Louis ) 33: 52–59

    Google Scholar 

  37. Singh AK, Bert AA, Feng WC, et al (1995) Stroke during coronary artery bypass grafting using hypothermia versus normothermic perfusion. Ann Thorac Surg 59: 84–89

    Article  PubMed  CAS  Google Scholar 

  38. Regragui I, Birdi I, Izzat MB, et al (1996) The effects of cardiopulmonary bypass temperature on neuropsychologic outcome after coronary artery operation: a prospective randomised trial. J Thorac Cardiovasc Surg 112: 10361045

    Google Scholar 

  39. Engelman RM, Pleet AB, Rousou JA, et al (1996) What is the best perfusion temperature for coronary revascularization? J Thorac Cardiovasc Surg 112: 1622–1633

    Article  PubMed  CAS  Google Scholar 

  40. Heyer EJ, Adams DC, Delphin E, et al (1997) Cerebral dysfunction after coronary artery bypass grafting done with mild or moderate hypothermia. J Thorac Cardiovasc Surg 114: 270–277

    Article  PubMed  CAS  Google Scholar 

  41. Warm Heart Investigators (1994) Randomised trial of normothermic versus hypothermic coronary bypass surgery. Lancet 343: 559–563

    Article  Google Scholar 

  42. Mora CT, Henson MB, Weintraub WS, et al (1996) The effect of temperature management during cardiopulmonary bypass on neurologic and neuropsychologic outcomes in patients undergoing coronary revascularization. J Thorac Cardiovasc Surg 112: 514–522

    Article  PubMed  CAS  Google Scholar 

  43. Birdi I, Regragui I, Izzat MB, et al (1997) Influence of normothermic systemic perfusion during coronary artery bypass operations: a randomized prospective study. J Thorac Cardiovasc Surg 114: 475–481

    Article  PubMed  CAS  Google Scholar 

  44. Martin TD, Craver JM, Gott JP, et al (1994) Prospective, randomized trial of retrograde warm blood cardioplegia: myocardial benefit and neurologic threat. Ann Thorac Surg 57: 298–304

    Article  PubMed  CAS  Google Scholar 

  45. Lehot JJ, Villard J, Piriz H, et al (1992) Hemodynamic and hormonal responses to hypothermic normothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth 6: 132–139

    Article  PubMed  CAS  Google Scholar 

  46. Regragui I, Izzat MB, Birdi I, et al (1995) Cardiopul monary bypass perfusion temperature dose not influence perioperative renal function. Ann Thorac Surg 60: 160–164

    PubMed  CAS  Google Scholar 

  47. Fisk GC, Wright JS, Turner BB, et al (1974) Cerebral effects of circulatory arrest at 20°C in the infant pig. Anesthesiol Intensive Care 2: 33

    CAS  Google Scholar 

  48. Treasure T, Naftel DC, Conger KA, et al (1983) The effect of hypothermic circulatory arrest time on cerebral func-, morphology, and biochemistry. J Thorac Cardiovasc extra Surg 86: 761–770

    CAS  Google Scholar 

  49. Coselli JS, Crawford ES, Beall AC, et al (1988) Deter nation of brain temperatures for safe circulatory arrest during cardiovascular operation. Ann Thorac Surg 45: 638–642

    Article  PubMed  CAS  Google Scholar 

  50. Molina JE, Einzig S, Mastri AR, et al (1984) Brain damage in profound hypothermia: perfusion versus circulatory arrest. J Thorac Cardiovasc Surg 87: 596–604.

    PubMed  CAS  Google Scholar 

  51. Wragg RE, Dimsdale JE, Moser K, et al (1988) Operative predictors of delirium after pulmonary thromboen- darterectomy. J Thorac Cardiovasc Surg 96: 524–529

    PubMed  CAS  Google Scholar 

  52. Stone JG, Young WL Smith CR, et al (1995) Do standar monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed? Anesthesiology 82: 344–351

    Article  PubMed  CAS  Google Scholar 

  53. Kurth CD, Steven JM, Nicolson SC (1995) Cerebral oxygenation during pediatric cardiac surgery using deep hypothermic circulatory arrest. Anesthesiology 82: 74–82

    Article  PubMed  CAS  Google Scholar 

  54. Rittenhouse EA, Mohri H, Reichenbach DD, et al (1972) Morphological alterations in vital organs after prolonged cardiac arrest at low body temperature. Ann Thorac Surg Isoflurane 13: 564–568

    Article  CAS  Google Scholar 

  55. Shenaq SA, Yawn DH, Crawford ES, et al (1986) Effect of profound hypothermia on leukocytes and platelets. Ann Clin Lab Sci 16: 130

    PubMed  CAS  Google Scholar 

  56. Ogilvy CS, Carter BS, Kaplan S, et al (1996) Temporary vessel occlusion for aneurysm surgery: risk factors for stroke in patients protected by induced hypothermia and hypertension and intravenous mannitol administration. J Neurosurg 84: 785–791

    Article  PubMed  CAS  Google Scholar 

  57. Neville WE, Kameya S, Oz M, et al (1961) Profound hypothermia and complete circulatory interruption. Arch Surg 82: 108–119

    Article  PubMed  CAS  Google Scholar 

  58. Michenfelder JD, Kirklin JW, Uihlein A, et al (1964) Clinical experience with a closed-chest method of producing profound hypothermia and total circulatory arrest in tneurosurgery. Ann Surg 159: 125–131

    Article  PubMed  CAS  Google Scholar 

  59. Drake CG, Barr HWK, Coles JC, et al (1964) The use of tion corporeal circulation and profound hypothermia in the treatment of ruptured intracranial aneurysm. J mi Neurosurg 21: 575–581

    Article  CAS  Google Scholar 

  60. Spetzler RF, Hadley MN, Rigamonti D, et al (1988) Aneurysms of basilar artery treated with circulatory arrest, hypothermia, and barbiturate cerebral protection. J Neurosurg 68: 868–879

    Article  PubMed  CAS  Google Scholar 

  61. Chyatte D, Elefteriades J, Kim B (1989) Profound hypothermia and circulatory arrest for aneurysm surgery J Neurosurg 70: 489–491

    CAS  Google Scholar 

  62. Williams MD, Rainer WG, Fieger HG Jr, et al (1991) Cardiopulmonary bypass, profound hypothermia, and cirdculatory arrest for neurosurgery. Ann Thorac Surg 52: 1069–1075

    Article  PubMed  CAS  Google Scholar 

  63. Ausman JI, Malik GM, Tomecek FJ, et al (1993) Hypothermic circulatory arrest and the management of giant and large cerebral aneurysms. Surg Neurol 40: 289–298

    Article  PubMed  CAS  Google Scholar 

  64. Hall R, Murdoch J (1990) Brain protection: physiological and pharmacological considerations. Part II: the pharma- cology of brain protection. Can J Anaesth 37: 762–777

    Article  PubMed  CAS  Google Scholar 

  65. Patel PM, Drummond JC, Cole DJ, et al (1998) and pentobarbital reduce the frequency of transient ischemic depolarizations during focal ischemia in rats. Anesth Analg 86: 773–780

    Google Scholar 

  66. Mellergard P (1992) Changes in human intracerebral temperature in response to different methods of brain cooling. Neurosurgery 31: 671–677

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Sumikawa, K., Hasuo, H., Hara, T. (2001). Induced Hypothermia in Cardiovascular and Brain Surgery. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_16

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics