Skip to main content

Diurnal and Seasonal Reactivity Patterns of Chemical Transmission in the Suprachiasmatic Nuclei and Other Brain Entities Related to Hibernation

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

Two characteristics cause mammalian hibernators to be excellent animal models for studying bio-rhythmicity: the presence of daily changes in peripheral autonomic functions during summer and their disappearance during hibernation in winter, despite continuing activity in the central rhythmic generator, the suprachiasmatic nuclei (SCN). This review proceeds from our own studies to (i) elucidate central neurotransmitters involved in different modes of signal processing in the SCN during summer, winter, and hibernation, and (ii) delineate the associated patterns of signal transduction in the central ascending noradrenergic system, an important link between the SCN and the autonomic peripheral system. We suggest that the central vasopressin (AVP) and enkephalin (ENK) systems decrease the set point for body temperature and that the output of the SCN is diminished by the activity of AVP and serotonin (5-HT). Both actions, together with the local input from substance P (SP) neurons, assist in the suppression of optic influences. On the other hand, the noradrenergic brainstem components maintain their functional capability in each phase of the annual cycle. Initiating arousal, they reduce the inhibitory action of the serotonergic system on the SCN. The subsequent increase of the suprachiasmatic information output activates the brainstem noradrenergic system to stimulate cardiovascular performance and heat generation in the brown adipose tissue (BAT). At body temperature above 15°C, the SCN triggers shivering via the paraventriculoseptal axis, which in turn activates the hippocampus and extrapyramidal centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turek FW (1985) Circadian neural rhythms in mammals. 10. Annu Rev Physiol 47: 49–64

    Article  PubMed  CAS  Google Scholar 

  2. Pohl H (1996) Circadian and circannual rhythmicity of hibernation in the Turkish hamster, Mesocricetus brandti. In: Geiser F, Hurlbuth AJ, Nicol SC (eds) Adaptations to the cold. University of New England Press, Armidale, 11. pp 87–94

    Google Scholar 

  3. Zucker I, Ruby NF, Dark J (1993) The suprachiasmatic nucleus mediates rhythms of hibernation and of daily torpor in rodents. In: Carey C, Florant GL, Wunder BA, 12. Horowitz B (eds) Life in the cold. Westview Press, Boulder, pp 277–289

    Google Scholar 

  4. Kilduff TS, Sharp FR, Heller HC (1982) [14C12Deoxyglucose uptake in ground squirrels during hibernation. J Neurosci 2: 143–157

    Google Scholar 

  5. Kilduff TS, Miller JD, Radeke CM, et al (1990) 14C–2Deoxyglucose uptake in the ground squirrel brain during entrance to and arousal from hibernation. J Neurosci 10: 2463–2475

    Google Scholar 

  6. Dark J, Pickard GE, Zucker I (1985) Persistence of circannual rhythms in ground squirrels with lesions of the suprachiasmatic nucleus. Brain Res 332: 201–207

    Article  PubMed  CAS  Google Scholar 

  7. Aschoff J (1989) Temporal orientation: circadian clocks in animals and humans. Anim Behav 37: 881–896

    Article  Google Scholar 

  8. Moore RY (1982) The suprachiasmatic nucleus and the organization of the circadian system. Trends Neurosci 5: 404–407

    Article  Google Scholar 

  9. Moore RY, Silver R (1998) Suprachiasmatic nucleus organization. Chronobiol Int 15: 475–487

    Article  PubMed  CAS  Google Scholar 

  10. Schindler CU, Nürnberger F (1990) Hibernation-related changes in the immunoreactivity of neuropeptide systems in the suprachiasmatic nucleus of the ground squirrel, Spermophilus richardsonii. Cell Tissue Res 262: 293–300

    Article  CAS  Google Scholar 

  11. Van den Pol AN, Tsujimoto K (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15: 1049–1086

    Article  PubMed  Google Scholar 

  12. Card JP, Moore RY (1989) Organization of lateral geniculate-hypothalamic connections in the rat. J Comp Neurol 284: 135–147

    Article  PubMed  CAS  Google Scholar 

  13. Moore RY (1973) Retinohypothalamic projection in mammals: a comparative study. Brain Res 49: 403–419

    Article  PubMed  CAS  Google Scholar 

  14. Vanecek J, Pavlik A, Illnerova H (1987) Hypothalamic 29. melatonin receptor sites revealed by autoradiography. Brain Res 435: 359–362

    Article  PubMed  CAS  Google Scholar 

  15. Watts AC (1991) The efferent projections of the suprachiasmatic nucleus: anatomical insights into the control of circadian rhythms. In: Klein DC, Moore RY, Reppert SM 30. (eds) Suprachiasmatic nucleus. The minds clock. Oxford University Press, New York, pp 77–106

    Google Scholar 

  16. Wagner S, Castel M, Gainer H, et al (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature (Lond) 387: 598–603

    Article  CAS  Google Scholar 

  17. Okamura H, Berod A, Julien JF, et al (1989) Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: in situ hybridization of glutamic acid decarboxylase ( GAD) mRNA and immunocytochemistry of GAD and GABA. Neurosci Lett 102: 131–136

    Google Scholar 

  18. Buijs RM, Hou YX, Shinn S, et al (1994) Ultrastructural evidence for intra- and extranuclear projections of GABAergic neurons of the suprachiasmatic nucleus. J Comp Neurol 340: 381–391

    Article  PubMed  CAS  Google Scholar 

  19. Wagner S, Castel M, Gainer H (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal 33. rhythmicity. Nature (Lond) 387: 598–603

    Article  CAS  Google Scholar 

  20. Gao B, Fritschy JM, Moore RY (1995) GABAA-receptor subunit composition in the circadian timing system. Brain Res 700: 142–156

    Article  PubMed  CAS  Google Scholar 

  21. Ibata Y, Takahashi Y, Okamura H, et al (1989) Vasoactive intestinal peptide ( VIP)-like immunoreactive neurons located in the rat suprachiasmatic nucleus receive a direct retinal projection. Neurosci Lett 97: 1–5

    Google Scholar 

  22. Meijer JH, Rietveld WJ (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69: 671–707

    PubMed  CAS  Google Scholar 

  23. Rieck-Nürnberger E, Pleschka K, Nürnberger F (1998) 36. Vasoaktives-intestinales Peptid im Nucleus suprachiasmaticus von Europäischen Hamstern: Funktionelle Beziehungen zum Winterschlaf. Ann Anat 180(suppl): 50

    Google Scholar 

  24. Zhang Q, Wicht H, Pleschka K, et al (1999) Hibernation related expression of vasopressin and vasoactive intesti 37. nal peptide in the hypothalamus of the European hamster Cricetus cricetus. Comp Biochem Physiol 124A (suppl): S131

    Google Scholar 

  25. Teclemariam-Mesbah R, Kalsbeek A, Pevet P, et al (1997) Direct vasoactive intestinal polypeptide-containing projection from the suprachiasmatic nucleus to spinal 38. projecting hypothalamic paraventricular neurons. Brain Res 748: 71–76

    Article  PubMed  CAS  Google Scholar 

  26. Schilling J, Nürnberger F (1998) Dynamic changes in the immunoreactivity of neuropeptide systems of the suprachiasmatic nuclei in golden hamsters during the 39. sleep-wake cycle. Cell Tissue Res 294: 233–241

    Article  PubMed  CAS  Google Scholar 

  27. Nürnberger F (1995) The neuroendocrine system in hibernating mammals: present knowledge and open questions. Cell Tissue Res 281: 391–412

    Article  PubMed  Google Scholar 

  28. Cahill GM, Menaker M (1989) Effects of excitatory amino acid receptor antagonists and agonists on suprachi asmatic nucleus responses to retinohypothalamic tract volleys. Brain Res 479: 76–82

    Article  PubMed  CAS  Google Scholar 

  29. Liou SY, Shibata S, Iwasaki K, et al (1986) Optic nerve stimulation induced increase of release of 3H-glutamate and 3H-aspartate but not 3H-GABA from the suprachiasmatic nucleus in slices of rat hypothalamus. Brain Res Bull 16: 527–531

    Article  PubMed  CAS  Google Scholar 

  30. Mikkelsen JD, Larsen PJ, O’Hare MMT, et al (1991) Gastrin releasing peptide (GRP) in the rat suprachiasmatic nucleus. An immunohistochemical, chromatographic, and radioimmunological study. Neuroscience 40: 55–66

    Google Scholar 

  31. Skambas D, Korf HW, Nürnberger F (1997) Cytoarchitektonischer und immuncytochemischer Vergleich des Nucleus suprachiasmaticus zwischen Melatonindefizienten C57BL- und Melatonin-exprimierenden C3H-Mäusestämmen. Ann Anat 179 (suppl): 335–336

    Article  Google Scholar 

  32. Stanton TL, Craft CM, Reiter RJ (1986) Evidence for the involvement of pineal melatonin in the control of the hibernation cycle in Spermophilus lateralis. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold. Physiological and biochemical adaptations. Elsevier, New York, pp 309–316

    Google Scholar 

  33. Mikkelsen J, Larsen PJ (1993) Substance P in the suprachiasmatic nucleus of the rat: an immunohistochemical and in situ hybridization study. Histochemistry 100: 3–16

    Article  PubMed  CAS  Google Scholar 

  34. Hartwich M, Kalsbeek A, Pévet P, et al (1994) Effects of illumination and enucleation on substance-Pimmunoreactive structure in subcortical visual centers of golden hamster andWistar rat. Cell Tissue Res 277:351–361 Kilduff TS

    Google Scholar 

  35. Radeke CD, Heller HC (1986) Neural activity during mammalian hibernation. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold. Elsevier, New York, pp 215–223

    Google Scholar 

  36. Lee TF, Nürnberger F, Jourdan ML, et al (1989) Possible involvement of septum in seasonal changes in thermoregulatory responses to met-enkephalinamide in ground squirrels. In: Lomax P, Schönbaum E (eds) Thermoregulation: research and clinical application. Karger, Basel, pp 200–203

    Google Scholar 

  37. Nürnberger F, Lee TF, Staiger JF, et al (1994) Involvement of limbic-neuroendocrine interactions in control of hibernation. In: Pleschka K, Gerstberger R (eds) Integrative and cellular aspects of autonomic functions: temperature and osmoregulation. John Libbey Eurotext, Paris, pp 259–268

    Google Scholar 

  38. Nürnberger F, Lederis K, Rorstad 0 (1986) Effects of hibernation on somatostatin-like immunoreactivity in the brain of the ground squirrel (Spermophilus richardsonii) and European hedgehog (Erinaceus europaeus). Cell Tissue Res 243: 263–271

    PubMed  Google Scholar 

  39. Nürnberger F, Krug L, Ohwatari N, et al (1997) Adrenergic signal transduction in the brainstem of euthermic and hibernating European hamsters. In: Blatteis CM (ed) Thermoregulation. Tenth international symposium on the pharmacology of thermoregulation. Ann NY Acad Sci 813: 705–711

    Google Scholar 

  40. Epelbaum J (1986) Somatostatin in the central nervous system: physiology and pathological modifications. Prog aspects of autonomic functions: temperature and Neurobiol 27:63–100 osmoregulation. John Libbey Eurotext, Paris, pp 57–66

    Google Scholar 

  41. Heller HC (1979) Hibernation: neural aspects. Annu Rev Physiol 41: 305–321

    Article  PubMed  CAS  Google Scholar 

  42. Nürnberger F, Schindler CU, Kriete A (1989) The serotonin-immunoreactive system of the suprachiasmati nucleus in the hibernating ground squirrel, Spermophilu richardsonii. Cell Tissue Res 256: 593–599

    Article  PubMed  Google Scholar 

  43. Radlmayr S, Nürnberger F (1995) Schlaf-und Tageszeiten-korrelierte Immunreaktivitätsmuster zen tralnervöser Serotonin-Systeme bei Goldhamstern. Ann Anat 177 (suppl): 7–8

    Google Scholar 

  44. Canguilhem B, Kempf E, Mack G, et al (1977) Regional studies of brain serotonin and norepinephrine in thehibernating, awaking or active European hamster, Crice- signal tus cricetus, during winter. Comp Biochem Physio 57C:175–179 and

    Google Scholar 

  45. Morin LP, Blanchard J (1995) Organization of the hamster intergeniculate leaflet: NPY and ENK project tions to the suprachiasmatic nucleus, intergeniculate leaflet and posterior limitans nucleus. Visual Neurosci 12: 57–67

    Google Scholar 

  46. Nürnberger F, Lee TF, Jourdan ML, et al (1991) Seasonal changes in methionine-enkephalin immunoreactivity in the brain of a hibernator, Spermophilus columbianus. Brain Res 547: 115–121

    Article  PubMed  Google Scholar 

  47. Nauta WJH (1958) Hippocampal projections and related Neurochem Int 9:211–230 neural pathways to the midbrain in the cat. Brain 64. Fain JN, Wallace MA, Wojcikiewicz RJH (1988) Evidence 81:319–340 for involvement of guanine nucleotide-binding regulatory

    Google Scholar 

  48. Heller HC, Colliver GW (1974) CNS regulation of body temperature during hibernation. Am J Physiol 227: 583–589

    PubMed  CAS  Google Scholar 

  49. Hammel HT, Heller HC, Sharp FR (1973) Probing the rostral brainstem of anesthetized, unanesthetized, and exercising dogs and hibernating and euthermic ground squirrels. Fed Proc 32: 1588–1597

    PubMed  CAS  Google Scholar 

  50. Heller HC, Hammel HAT (1972) CNS control of body temperature during hibernation. Comp Biochem Physiol 41A: 349–359

    Article  CAS  Google Scholar 

  51. Beckman AL, Stanton TL (1982) Properties of the CNS during hibernation. In: Beckman AL (ed) The neural basis of behaviour. Spectrum, New York, pp 19–45

    Chapter  Google Scholar 

  52. Cai YP, Zhao HQ, Huang QH (1989) Reevaluation of involvement of norepinephrine and serotonin in initiation of hibernation. In: Malan A, Canguilhem B (eds) Living in the cold, vol II. Libbey, London, pp 477–484

    Google Scholar 

  53. Krug L, Nürnberger F, Pleschka K (1995) Norepinephrine binding sites in the brainstem and diencephalon of active, resting and hibernating European hamsters (Cricetus cricetus). In: Elsner N, Menzel R (eds) Göttingen Neuro- biology Report 1995. Thieme, Stuttgart, p 590

    Google Scholar 

  54. Nürnberger F, Pleschka K, Masson-Pévet M, et al (1997) The somatostatin system of the brain and hibernation in the European hamster (Cricetus cricetus). Cell Tissue Res 288: 441–447.

    Article  PubMed  Google Scholar 

  55. Igelmund P, Heinemann U, Klussmann FW (1994) Temperature dependence of synaptic transmission in hippocampal slices of hibernating hamsters and rats. In: Pleschka K, Gerstberger R (eds) Integrative and cellular

    Google Scholar 

  56. Hobson JA (1989) Sleep. Scientific American Library, New York

    Google Scholar 

  57. Korf HW, Schomerus C, Maronde E, et al (1996) Signal transduction molecules in the rat pineal organ: Ca’, pCREB, and ICER. Naturwissenschaften 83: 535–548

    Google Scholar 

  58. Witte K, Lemmer B (1997) Rhythms in second ger mechanisms. In: Redfern PH, Lemmer B (eds) Physiology and pharmacology of biological rhythms. Handb Exp Pharm 125: 135–156

    Google Scholar 

  59. Gilman A (1987) G proteins: transducers of receptorgenerated signals. Annu Rev Biochem 56: 615–649

    Article  PubMed  CAS  Google Scholar 

  60. Stryer L, Boume HR (1986) G proteins: a family of transducers. Annu Rev Cell Biol 2: 391–419

    Article  PubMed  CAS  Google Scholar 

  61. Pleschka K, Heinrich A, Witte K, et al (1996) Diurnal seasonal changes in sympathetic signal transduction in cardiac ventricles of European hamsters. Am J Physiol 270: R304 - R309

    PubMed  CAS  Google Scholar 

  62. Weyrich SR, Leßke J, Ihl-Vahl R, et al (1997) Rasche circadiane und jahreszeitliche Regulation der mRNA: Expression der Isoformen der Adenylylzyklase in Hamsterherzen. Z Kardiol 86(2): 337, 1217

    Google Scholar 

  63. Downes CP (1986) Agonist-stimulated phosphatidylinositol 4,5-bisphosphate metabolism in the nervous system. proteins in the activation of phospholipases by hormones. FASEB J 2: 2569–2574

    Google Scholar 

  64. Fain JN, Wallace MA, Wojcikiewicz RJH (1988) Evidence for involvement of guanine nucleotide-binding regulatory proteins in the activation of phospholipases by hormones. FASEB J 2: 2569–2574

    CAS  Google Scholar 

  65. O’Neill C, Fowler CJ, Wiehager B, et al (1991) Assay of a phospatidylinositol bisphosphate phospholipase C activity in postmortem brain. Brain Res 543: 307–314

    Article  PubMed  Google Scholar 

  66. Nedergaard J, Biswas H, Bronnikov G, et al (1996) a,Adrenergic receptors in brown adipose tissue during coldacclimation and hibernation: density and functional significance. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptation to the cold. Tenth international hibernation symposium. University of New England Press, Armidale, pp 281–291

    Google Scholar 

  67. Witte K, Lemmer B, Nürnberger F, et al (2000) Increased al-adrenergic receptor density in myocardium from hibernating and winter awake European hamsters (Cricetus cricetus). Pflügers Arch 439 (suppl): R415

    Google Scholar 

  68. Pleschka K, Nürnberger F (1997) Beta-adrenergic signal transduction in the hypothalamus of the European hamster: relation with the seasonal and hibernation cycle and the diurnal activity cycle. Biol Cell 89: 525–529

    Article  PubMed  CAS  Google Scholar 

  69. Pleschka K, Schnecko A, Lemmer B, et al (1996) In vitro stimulation in the hippocampus, cortex and cerebellum of euthermic and hibernating hamsters. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold. University of New England Press, Armidale, pp 175–178

    Google Scholar 

  70. Pleschka K, Schnecko A, Witte K, et al (1995) Sympathetic signal transduction in the brain and heart during euthermia and hibernation: Functional and cellular aspects. In: Nagasaka T, Milton AS (eds) Body temperature and metabolism. IPEC, Tokyo, pp 173–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Pleschka, K., Bari, F., Nürnberger, F. (2001). Diurnal and Seasonal Reactivity Patterns of Chemical Transmission in the Suprachiasmatic Nuclei and Other Brain Entities Related to Hibernation. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics