Skip to main content

The Central Organization of the Thermoregulatory System

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

The body temperature of homeothermic animals is regulated by systems that utilize multiple behavioral and autonomic effector responses. The thermoreceptors that provide inputs to the regulatory systems are distributed throughout the body. Although the regulatory aspects of this multiple input-output system are largely nervous, knowledge about the “neuronal circuit” for thermoregulation remained rather stagnant for several decades. However, the last few years have brought new approaches that have led to new information and new ideas about neuronal interconnections in the thermoregulatory network. This advance is especially true for efferent pathways from the preoptic area (PO). Recent studies utilizing chemical stimulation of the PO have revealed that not only heat loss but also heat production responses are controlled by PO warm-sensitive neurons. These neurons send excitatory efferent signals for heat loss and inhibitory efferent signals for heat production. The warm-sensitive neurons that control these two opposing responses are different and work independently. Recent electrophysiological analysis identified some neurons sending axons directly to the spinal cord for the control of thermoregulatory effectors. Included are midbrain reticulospinal neurons for shivering and premotor neurons in the medullary raphé nuclei for skin vasomotor control. Even though many neurons in the efferent pathways remain unidentified, recent advances in experimental techniques promise a much more detailed understanding of the neuronal circuit underlying thermoregulation in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simon E, Pierau F – K, Taylor DCM (1986) Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev 66: 235 – 300

    PubMed  CAS  Google Scholar 

  2. Kanosue K, Hosono T, Zhang Y – H, et al (1998) Neuronal networks controlling thermoregulatory effectors. Prog Brain Res 115: 49 – 62

    Article  Google Scholar 

  3. Nakayama T, Eisenman JS, Hardy JD (1961) Single unit activity of anterior hypothalamus during local heating. Science 134: 560 – 561

    Article  PubMed  CAS  Google Scholar 

  4. Barker JL, Carpenter DO (1970) Thermosensitivity of neurons in the sensorimotor cortex of the cat. Science 169: 597 – 598

    Article  PubMed  CAS  Google Scholar 

  5. Boulant JA (1980) Hypothalamic control of thermoregulation. Neurophysiological basis. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus. Dekker, New York, pp 1 – 82

    Google Scholar 

  6. Hori T (1991) An update on thermosensitive neurons in the brain: from cellular biology to thermal and non – thermal homeostatic functions. Jpn J Physiol 41: 1 – 22

    Article  PubMed  CAS  Google Scholar 

  7. Nakayama T (1985) Thermosensitive neurons in the brain. Jpn J Physiol 35: 375 – 389

    Article  PubMed  CAS  Google Scholar 

  8. Hammel HT (1968) Regulation of internal body temperature. Annu Rev Physiol 30: 641 – 710

    Article  PubMed  CAS  Google Scholar 

  9. Wyndam CH, Atkins AR (1968) A physiological scheme and mathematical model of temperature regulation in man. Pflugers Arch 303: 14 – 30

    Article  Google Scholar 

  10. Bligh J (1973) Temperature regulation in mammals and other vertebrates. North – Holland, Amsterdam, pp 174 – 191

    Google Scholar 

  11. Boulant JA (1974) The effect of firing rate on preoptic neuronal thermosensitivity. J Physiol (Lond) 240: 661 – 669

    CAS  Google Scholar 

  12. Zhang Y – H, Yanase – Fujiwara M, Hosono T, et al (1995) Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats. J Physiol (Lond) 485: 195 – 202

    CAS  Google Scholar 

  13. Chen X – M, Hosono T, Yoda T, et al (1998) Efferent projection from the preoptic area for the control of non – shivering thermogenesis in rats. J Physiol (Lond) 512: 883 – 892

    Article  CAS  Google Scholar 

  14. Kanosue K, Zhang Y – H, Yanase – Fujiwara M, et al (1994) Hypothalamic network for thermoregulatory shivering. Am J Physiol 267: R275 – R282

    PubMed  CAS  Google Scholar 

  15. Stuart DG, Kawamura Y, Hemingway A (1961) Activation and suppression of shivering during septal and hypothalamic stimulation. Exp Neurol 4: 485 – 506

    Article  PubMed  CAS  Google Scholar 

  16. Stuart DG, Kawamura Y, Hemingway A, et al (1962) Effects of septal and hypothalamic lesions on shivering. Exp Neurol 5: 335 – 347

    Article  PubMed  CAS  Google Scholar 

  17. Halvorson I, Thornhill J (1993) Posterior hypothalamic stimulation of anesthetized normothermic and hypothermic rats evokes shivering thermogenesis. Brain Res 610: 208 – 215

    Article  PubMed  CAS  Google Scholar 

  18. Benzinger TH, Pratt AW, Kitzinger C (1961) The thermostatic control of human metabolic heat production. Proc Natl Acad Sci USA 47: 730 – 739

    Article  PubMed  CAS  Google Scholar 

  19. Hemingway A (1963) Shivering. Physiol Rev 43: 397 – 422

    CAS  Google Scholar 

  20. Asami A, Asami T, Hori T, et al (1988) Thermally – induced activities of the mesencephalic reticulospinal and rubrospinal neurons in the rat. Brain Res Bull 20: 387398

    Google Scholar 

  21. Asami T, Hori T, Kiyohara T, et al (1988) Convergence of thermal signals on the reticulospinal neurons in the midbrain, pons and medulla oblongata. Brain Res Bull 20: 581 – 596

    Article  PubMed  CAS  Google Scholar 

  22. Banet M, Hensel H, Liebermann H (1978) The central control of shivering and non – shivering thermogenesis in the rat. J Physiol (Lond) 283: 569 – 584

    CAS  Google Scholar 

  23. Imai – Matsumura K, Matsumura K, Nakayama T (1984) Involvmenet of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn J Physiol 34: 939 – 943

    Article  PubMed  CAS  Google Scholar 

  24. Perkins MN, Rothwell NJ, Stock MJ, et al (1994) Biphasic brown fat temperature responses to hypothalamic stimulation in rats. Am J Physiol 266: R328 – R337

    Google Scholar 

  25. Thornhill J, Halvorson I (1990) Brown adipose tissue thermogenetic responses of rats induced by central stimulation: effect of age and cold acclimation. J Physiol (Lond) 426: 317 – 333

    CAS  Google Scholar 

  26. Woods A, Stock M (1994) Biphasic brown fat temperature responses to hypothalamic stimulation in rats. Am J Physiol 266: R328 – R337

    PubMed  CAS  Google Scholar 

  27. Freeman PH, Wellman PJ (1987) Brown adipose tissue thermogenesis induced by low level electrical stimulation of hypothalamus in rats. Brain Res Bull 18: 7 – 11

    Article  PubMed  CAS  Google Scholar 

  28. Holt SJ, Wheal HV, York DA (1987) Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effects of electrical stimulation of hte ventromedial nucleus and other hypothalamaic centres. Brain Res 405: 227 – 233

    Google Scholar 

  29. Amir S (1990) Intra – ventromedial hypothalamic injection of glutamate simulates brown adipose tissue thermogenesis in the rat. Brain Res 511: 341 – 344

    Article  PubMed  CAS  Google Scholar 

  30. Amir S (1990) Activation of brown adipose tissue thermogenesis by chemical stimulation of the posterior hypothalamus. Brain Res 534: 303 – 308

    Article  PubMed  CAS  Google Scholar 

  31. Amir S (1990) Stimulation of the paraventricular nucleus with glutamate activates interscapular brown adipose tissue thermogenesis in rats. Brain Res 508: 152 – 155

    Article  PubMed  CAS  Google Scholar 

  32. Kobayashi A, Osaka T, Namba Y, et al (1999) CGRP microinjection into the ventromedial or dorsomedial hypothalamic nucleus activates heat production. Brain Res 827: 176 – 184

    Article  PubMed  CAS  Google Scholar 

  33. Imai – Matsumura K, Nakayama T (1987) The central efferent mechanism of brown adipose tissue thermogenesis induced by preoptic cooling. Can J Physiol Pharmacol 65: 1299 – 1303

    Article  PubMed  CAS  Google Scholar 

  34. Corbett SW, Kaufman LN, Keesey RE (1988) Thermogenesis after lateral hypothalamic lesion: contribution of brown adipose tissue. Am J Physiol 255: E708 – E715

    PubMed  CAS  Google Scholar 

  35. Shibata M, Benzi RH, Seydoux J, et al (1987) Hyperthermia induced by pre – pontine knifecut: evidence for a tonic inhibition of non – shivering thermogenesis in anaesthetized rat. Brain Res 436: 273 – 282

    Article  PubMed  CAS  Google Scholar 

  36. Shibata M, Iriki M, Arita J, et al (1996) Procaine microinjection into the lower midbrain increases brown fat and body temperatures in anesthetized rats. Brain Res 716: 171 – 179

    Article  PubMed  CAS  Google Scholar 

  37. Shibata M, Uno T, Hashimoto M (1999) Disinhibition of lower midbrain neurons enhances non – shivering thermogenesis in anesthetized rats. Brain Res 833: 242 – 250

    Article  PubMed  CAS  Google Scholar 

  38. Morrison SF (1999) RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am J Physiol 276: R962 – R973

    PubMed  CAS  Google Scholar 

  39. Morrison SF, Sved AF, Passerin AM (1999) GABAmediated inhibition of raphe pallidus neurons regulates sympathetic outflow to brown adipose tissue. Am J Physiol 276: R290 – R297

    PubMed  CAS  Google Scholar 

  40. Shibata M, Uno T, Hashimoto M (2000) Neurons in the lower midbrain tonically inhibit non – shivering thermogenesis through their influence on inferior olivary neurons in anesthetized rats. J Therm Biol 24: 365 – 368

    Article  Google Scholar 

  41. Ishikawa Y, Nakayama T, Kanosue K, et al (1984) Activation of central warm – sensitive neurons and the tail vasomotor response in rats during brain and scrotal thermal stimulation. Pflugers Arch 400: 222 – 227

    Article  PubMed  CAS  Google Scholar 

  42. Kanosue K, Hosono T, Yanase – Fujiwara M (1994) Hypothalamic network for thermoregulatory vasomotor activity. Am J Physiol 267: R283 – R388

    PubMed  CAS  Google Scholar 

  43. Zhang Y – H, Hosono T, Yanasa – Fujiwara M, et al (1997) Effect of midbrain stimulation on thermoregulatory vasomotor responses in rats. J Physiol (Lond) 503:177 tion, and tail vasodilation in rats. J Comp Physiol Psychol Neuronal Circuit for Thermoregulationvasomotor responses in rats. J Physiol (Lond) 503: 177 – 186

    Google Scholar 

  44. Kanosue K, Hosono T, Yoda T, et al (1999) Neuronal network underlying thermoregulatory vasomotor control. In: Shibata M, Iriki M, Kanosue K, Inaba Y (eds) 1998 International Symposium on Human Biometeorology. IPEC, Tokyo, pp 70 – 73

    Google Scholar 

  45. McAllen R, Dampney R (1989) The selectivity of descending vasomotor control by subretrofacial neurons. Prog Brain Res 81: 233 – 242

    Article  PubMed  CAS  Google Scholar 

  46. McAllen RM, May CN (1994) Effects of preoptic warming on subretrofacial and cutaneous vasoconstrictor nerurons in anaesthetized cats. J Physiol (Lond) 481: 719 – 730

    CAS  Google Scholar 

  47. Rathner JA, McAllen RM (1999) Differential control of sympathetic drive to the rat tail artery and kidney by medullary premotor cell groups. Brain Res 834: 196 – 199

    Article  PubMed  CAS  Google Scholar 

  48. Appenzeller O (1990) Hie autonomic nervous system. Elsevier, Amsterdam, pp 117 – 140

    Google Scholar 

  49. Hainsworth FR, Strieker EM (1970) Salivary cooling by rats in the heat. In: Hardy JD, Gagge AP, Stolwijk JAJ (eds) Physiological and behavioural temperature regulation. Thomas, Springfield, pp 611 – 626

    Google Scholar 

  50. Nakayama T, Kanosue K, Tanaka H, et al (1986) Thermally induced salivary secretion in anesthetized rats. Pflugers Arch 406: 351 – 355

    Article  PubMed  CAS  Google Scholar 

  51. Kanosue K, Nakayama T, Tanaka H, et al (1990) Modes of action of local hypothalamic and skin thermal stimulations on salivary secretion in rats. J Physiol (Lond) 424: 459 – 471

    CAS  Google Scholar 

  52. Kanosue K, Matsuo R, Tanaka H, et al (1986) Effect of body temperature on salivary reflexes in rats. J Auton Nerv Syst 16: 233 – 237

    Article  PubMed  CAS  Google Scholar 

  53. Hubschle T, McKinley MJ, Oldfield BJ (1998) Efferent connections of the lamina terminalis, the preoptic area and the insular cortex to submandibular and sublingual gland of the rat traced with Pseudorabies virus. Brain Res 806: 219 – 231

    Article  PubMed  CAS  Google Scholar 

  54. Roberts WW, Mooney RD (1974) Brain areas controlling thermoregulatory grooming, prone extension, locomotion, and tail vasodilation in rats. J Comp Physiol Psychol 86: 470 – 480

    Article  PubMed  CAS  Google Scholar 

  55. Tanaka H, Kanosue K, Nakayama T, et al (1986) Grooming, body extension, and tail vasomotor responses induced by hypothalamic warming at different ambient temperatures in rats. Physiol Behav 38: 145 – 151

    Article  PubMed  CAS  Google Scholar 

  56. Yanase M, Kanosue K, Yasuda H, et al (1991) Salivary secretion and grooming behaviour during heat exposure in freely moving rats. J Physiol (Lond) 432: 585 – 592

    CAS  Google Scholar 

  57. Carlisle H (1969) The effects of preoptic and anterior hypothalamic lesions on behavioral thermoregulation in the cold. J Comp Physiol Psychol 69: 391 – 402

    Article  PubMed  CAS  Google Scholar 

  58. Satinoff E, Rutstein J (1970) Behavioral thermoregulation in rats with anterior hypothalamic lesions. J Comp Physiol Psychol 71: 77 – 82

    Article  PubMed  CAS  Google Scholar 

  59. Satinoff E (1964) Behavioral thermoregulation in response to local cooling of the rat brain. Am J Physiol 206: 1389 – 1394

    PubMed  CAS  Google Scholar 

  60. Carlisle H (1966) Behavioral significance of hypothalamic temperature – sensitive cells. Nature (Lond) 209: 1324 – 1325

    Article  CAS  Google Scholar 

  61. Craig AD (1996) Pain, temperature, and the sense of the body. In: Franzen O, Johansson R, Terenius L (eds) Somesthesis and the neurobiology of the somatosensory cortex. Birkhauser, Basel, pp 27 – 39

    Chapter  Google Scholar 

  62. Berner NJ, Heller HC (1998) Does the preoptic anterior hypothalamus receive thermoafferent information? Am J Physiol 274: R9 – R18

    PubMed  CAS  Google Scholar 

  63. Kanosue K, Nakayama T, Ishikawa Y, et al (1985) Responses of thalamic and hypothalamic neurons to scrotal warming in rats: nonspecific responses? Brain Res 328: 207 – 213

    Article  Google Scholar 

  64. Kiyohara T, Hirata M, Hori T, et al (1990) Hypothalamic warm – sensitive neurons possess a tetrodotoxin – sensitive sodium channel with a high Q10. Neurosci Res 8: 48 – 53

    Article  PubMed  CAS  Google Scholar 

  65. Gordon CJ (1993) Temperature regulation in laboratory rodents. Cambridge University Press, New York

    Book  Google Scholar 

  66. Werner J (1980) The concept of regulation for human body temperature. J Therm Biol 5: 75 – 82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Kanosue, K., Yoshida, K., Maruyama, M., Nagashima, K. (2001). The Central Organization of the Thermoregulatory System. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics