Advertisement

Abstract

The initial concept of Kamiokande was proposed by Koshiba in 1979. This idea was presented by one of his collaborators at a workshop on the unified theory and the baryon number in the universe [1]. The detector considered is shown in Fig.l. It comprises water Čerenkov counters A and B, and is located deep underground. Counter B is used to detect nucléon decay which occurs in water within the detector. To be specific, the size is 20 × 20 × 5 m3, containing 2000 tons of water. The surface is covered with 7500 5-inch photomultiplier tubes (PMT’s), one in every 40 × 40 cm2. The inside of the box is painted black so as to avoid any reflection of the Čerenkov light: the direction and, in some cases, energy of charged particles and γ-rays can then be measured. Counter A has a size of 25 × 25 × 0.1 m3, and is placed above counter B while serving as an anticounter to veto atmospheric muons that penetrate. The inside of this counter is painted white, and the water is dissolved with a wavelength shifter so as to increase the light yield, which reduces the number of necessary phototubes: one hundred tubes are hopefully more than enough. These are pasted onto the top surface of the counter. A steel plate having a thickness 25 cm between counters A and B is used to stop any charged particles produced by nucléon decays in counter B. Fig. 2 illustrates how the p → μ+ + γ decay mode would be detected in this detector.

Keywords

High Energy Physics Solar Neutrino Historical Account Atmospheric Neutrino Neutrino Physics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Watanabe, Proc. Workshop on the unified theory and the baryon number in the universe, KEK Report, KEK-79–18 (1979).Google Scholar
  2. [2]
    T. Hayashi, Proc. INS Int. Symp. on nuclear radiation detectors, Tokyo (1981).Google Scholar
  3. [3]
    T. Suda, Proc. Neutrino ′81, Hawaii (1981).Google Scholar
  4. [4]
    K. Takahashi, Proc. Third workshop on grand unification, North Carolina (1982).Google Scholar
  5. [5]
    M. Koshiba, Proc. 21th High energy Int. conf., Paris (1982); Proc. Topical symposium on high energy physics, Tokyo (1982).Google Scholar
  6. [6]
    K. Arisaka, Proc. Topical symposium on high energy physics, Tokyo (1982).Google Scholar
  7. [7]
    A. Suzuki, Proc. Topical symposium on high energy physics, Tokyo (1982).Google Scholar
  8. [8]
    H. Kume et al., Nucl. Instr. of Meth. 205 (1983), 443.CrossRefGoogle Scholar
  9. [9]
    M. Koshiba, Proc. ICOBAN ′84, Utah (1984).Google Scholar
  10. [10]
    Y. Totsuka, Proc. XIXth Moriond Conf. (1984)Google Scholar
  11. [11]
    K. Arisaka et al., J. Phys. Soc. Jpn. 54 (1985) 3213. 420 A. SuzukiADSCrossRefGoogle Scholar
  12. [12]
    T. Kajita et al., J. Phys. Soc. Jpn. 54 (1985) 4065.ADSCrossRefGoogle Scholar
  13. [13]
    T. Kajita et al., J. Phys. Soc. Jpn. 55 (1986) 711.ADSCrossRefGoogle Scholar
  14. [14]
    V.A. Rubakov, Pis’ma Zh. Eksp. & Teor. Fiz. 33 (1981) 658 (JETP Lett. 33 (1981) 644);Google Scholar
  15. [14a]
    V.A. Rubakov, Nucl. Phys. B203(1982) 311.ADSCrossRefGoogle Scholar
  16. [15]
    J. Arafune and M. Fukugita, Phys. Lett. B133 (1983) 380.CrossRefGoogle Scholar
  17. [16]
    T. Kajita et al., J. Phys. Soc. Jpn. 54 (1985) 4065.ADSCrossRefGoogle Scholar
  18. [17]
    K. Hirata et al., Phys. Rev. Lett. 58 (1987) 1490.ADSCrossRefGoogle Scholar
  19. [18]
    M. Koshiba, Phys. Rep. 220 (1992) 229.ADSCrossRefGoogle Scholar
  20. [19]
    Y. Oyama et al., Phys. Rev. Lett. 59 (1987) 2604.ADSCrossRefGoogle Scholar
  21. [20]
    R. Davis, Jr., et al., Phys. Rev. Lett. 20 (1968) 1205.ADSCrossRefGoogle Scholar
  22. [21]
    J.K. Rowley, B.T. Cleveland and R. Davis, Jr., AIP Conf. Proc. No. 126 (1984) pi.Google Scholar
  23. [22]
    E.W. Beier, in Proc. the 7th Workshop on Grand Unification/ICOBAN ′86, Toyama (1986).Google Scholar
  24. [23]
    A. Suzuki, in Proc. the 12th Int. Conf. on Neutrino Physics and Astrophsics, Neutrino ′86, Sendai (1986).Google Scholar
  25. [24]
    K.S. Hirata et al., Phys. Rev. Lett. 63 (1989) 16.ADSCrossRefGoogle Scholar
  26. [25]
    K. S. Hirata et al., Phys. Rev. Lett. 65 (1990) 1297.ADSCrossRefGoogle Scholar
  27. [26]
    J.N. Bahcall and P.K. Ulrich, Rev. Mod. Phys. 60(1988)297.ADSCrossRefGoogle Scholar
  28. [27]
    R. Davis, Jr., Proc. 13th Int. Conf. on Neutrino Physics and Astrophysics, Neutrino ′88, Boston (1988).Google Scholar
  29. [28]
    K. Inoue, Proc. XXVIIIth Recontre de Moriond, Electroweak Interactions and Unified Theories (1993).Google Scholar
  30. [29]
    S.P. Mikheyev and A.Yu Smirnov, Yad. Fiz. 42(1985)1441 (Sov. J. Nucl. Phys. 42(1985)913).ADSGoogle Scholar
  31. [30]
    L. Wolfenstein, Phys. Rev. D17 (1978) 2369;ADSGoogle Scholar
  32. [30a]
    L. Wolfenstein, Phys. Rev. 20 (1979) 2634.ADSGoogle Scholar
  33. [31]
    K. S. Hirata et al., Phys. Rev. Lett. 65 (1990) 1301.ADSCrossRefGoogle Scholar
  34. [32]
    K.S. Hirata et al., Phys. Rev. Lett. 66 (1991) 9.ADSCrossRefGoogle Scholar
  35. [33]
    M. Koshiba, Proc. of Workshop on Grand Unified Theories and Cosmology, KEK Report 84–12 (1983).Google Scholar
  36. [34]
    M. Koshiba and Y. Totsuka, Proc. of Workshop: Toward Unification and its Verification, KEK Report (1984).Google Scholar
  37. [35]
    Y. Totsuka, Proc. of 7th Workshop on Grand Unification/ICOBAN ′86, Toyama (1986); UT-ICEPP-86–06; in Proc. of Int. Symposium on Underground Physics Experiments, Tokyo (1990).Google Scholar
  38. [36]
    A. Suzuki et al., Nucl. Instr. and Meth. (1993).Google Scholar
  39. [37]
    M. Takita, in Proc. Frontiers of Neutrino Astrophysics, Takayama (1992).Google Scholar

Copyright information

© Springer Japan 1994

Authors and Affiliations

  • Atsuto Suzuki
    • 1
  1. 1.Faculty of ScienceTohoku UniversityJaPan

Personalised recommendations