Advertisement

Superheated Superconducting Granules for a Particle Detector

  • Takeo Ebisu
  • Tadashi Watanabe

Abstract

Recently, cryogenic methods have attracted much attention for the purpose of detecting feeble signals caused by a very small energy transfer induced by solar neutrinos [1][2] or weakly interacting massive particles, such as dark-matter candidates in galactic halos [3]. The principle of detectors is based on the properties of materials expected at low temperatures: 1) Both the specific heat and thermal noise decrease in crystals, 2) superconductivity appears in most metals, and 3) liquid helium shows superfluidity below the lambda point. Since the energy relevant to these properties is of the order of meV, much smaller than that necessary to excite or ionize atoms or molecules, the adoption of only one or two of them could provide novel and promising particle detectors. Feasibility studies have been carried out on the following detection devices: i) bolometers using either ballistic phonons in silicon or rotons in superfluid helium, ii) transition-edge thermometers based on superconductivity, iii) superconducting-tunnel junctions, and iv) superheated superconducting granules (SSGs) [4][5][6].

Keywords

Dark Matter Magnetic Flux Applied Field Energy Deposit Critical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. N. Bahcall, W. F. Huebner, S. H. Lubow, P. D. Parker and R. K. Ulrich: Rev. Mod. Phys. 54 (1982) 767.ADSCrossRefGoogle Scholar
  2. [2]
    J. N. Bahcall and R. K. Ulrich: Rev. Mod. Phys. 60 (1988) 297.ADSCrossRefGoogle Scholar
  3. [3]
    See, for instance, V. Trimble: Annu. Rev. Astron. Astrophys. 25 (1987) 425.ADSCrossRefGoogle Scholar
  4. [4]
    “Low Temperature Detectors for Neutrinos and Dark Matter” ed. K. Pretzl, N. Schmitz and L. Stodolsky (Springer Verlag, 1987).Google Scholar
  5. [5]
    “Low Temperature Detectors for Neutrinos and Dark Matter II” ed. L. Gonzalez-Mestres and D. Perret-Gallix (Editions Frontieres, 1988).Google Scholar
  6. [6]
    “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990).Google Scholar
  7. [7]
    L. Gonzalez-Mestres and D. Perret-Gallix: Nuovo Cimento C9 (1986) 573.CrossRefGoogle Scholar
  8. [8]
    A. Drukier and L. Stodolsky: Phys. Rev. D30 (1984) 2295.ADSCrossRefGoogle Scholar
  9. [9]
    M. W. Goodman and E. Witten: Phys. Rev. D31 (1985) 3059.ADSGoogle Scholar
  10. [10]
    A. K. Drukier, K. Freese and D. N. Spergel: Phys. Rev. D33 (1986) 3495.ADSCrossRefGoogle Scholar
  11. [11]
    A. F. Pacheco: Mod. Phys. Lett. Al (1986) 167.Google Scholar
  12. [12]
    C. Bernard, A. de Rujula and B. Lautrup: Nucl. Phys. B242 (1984) 93.ADSCrossRefGoogle Scholar
  13. [13]
    J. R. Primack, D. Seckel and B. Sadoulet: Annu. Rev. Nucl. Part. Sci. 38 (1988) 751–807, “Detection of Cosmic Dark Matter”.ADSCrossRefGoogle Scholar
  14. [14]
    “Superconductive Particle Detectors” ed. A. Barone (World Scientific, 1988).Google Scholar
  15. [15]
    P. F. Smith and J.D. Lewin: Phys. Lett.(Phys. Rep.) C187#5 (1990) 203–280, “Dark Matter Detection”.ADSGoogle Scholar
  16. [16]
    “Low Temperature Detectors for Neutrinos and Dark Matter IV” ed. N. Booth and G. Salmon (Editions Frontieres, 1992).Google Scholar
  17. [17]
    See, for instance, G. K. White: “Experimental Techniques in Low Temperature Physics” 2nd ed. (Oxford Univ. Press, 1968);Google Scholar
  18. [17a]
    O. V. Lounasmaa: “Experimental Principles and Methods below 1 K” (Academic Press, 1974);Google Scholar
  19. [17b]
    M. Tinkham: “Introduction to Superconductivity” (McGraw-Hill, 1975).Google Scholar
  20. [18]
    V. L. Ginzburg: J. Exp. Theor. Phys. (USSR) 34 (1958) 113.Google Scholar
  21. [19]
    “Superconductivity”, ed. R. D. Parks (Marcel Dekker, N.Y.,1969).Google Scholar
  22. [20.
    ] R. Radebaugh and P. H. Keesom: Phys. Rev. 149 (1966) 209, 217.ADSCrossRefGoogle Scholar
  23. [21]
    N. Perrin and X. C. Zeng: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 75;Google Scholar
  24. [21a]
    T. Ebisu, N. Nakagawa and T. Watanabe: J. Phys. Soc, Jpn. 60 (1991) 1415.ADSCrossRefGoogle Scholar
  25. [22]
    M. Frank et al.: Phys. Lett. B230 (1989) 159; Preprint MPI- PAE/Exp.El.225 July 1990.CrossRefGoogle Scholar
  26. [23]
    W. Seidel et al.: Rev. Sci. Instrum. 58 (1987) 1471;ADSCrossRefGoogle Scholar
  27. [23a]
    L. Gonzales-Mestres and D. Perret-Gallix: “Low Temperature Detectors for Neutrinos and Dark Matter” ed. K. Pretzl, N. Schmitz and L. Stodolsky (Springer Verlag, 1987) 9,CrossRefGoogle Scholar
  28. [23b]
    L. Gonzales-Mestres and D. Perret-Gallix “Low Temperature Detectors for Neutrinos and Dark Matter II” ed. L. Gonzalez-Mestres and D. Perret-Gallix (Editions Frontieres, 1988) 297;Google Scholar
  29. [23c]
    F. v. Feilitzsch et al.: “Low Temperature Detectors for Neutrinos and Dark Matter” ed. K. Pretzl, N. Schmitz and L. Stodolsky (Springer Verlag, 1987) 94;CrossRefGoogle Scholar
  30. [23d]
    P. Freund et al.: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 55;Google Scholar
  31. [23e]
    M. Chmielowski et al.: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 99.Google Scholar
  32. [24]
    A. Drukier and L. Stodolsky: Phys. Rev. D30 (1984) 2295.;ADSCrossRefGoogle Scholar
  33. [24a]
    M. W. Goodman and E. Witten: Phys. Rev. D31 (1985) 3059;ADSGoogle Scholar
  34. [24b]
    A. K. Drukier, K. Freese and D. N. Spergel: Phys. Rev. D33 (1986) 3495;ADSCrossRefGoogle Scholar
  35. [24c]
    P. F. Smith and J.D. Lewin: Phys. Lett.(Phys. Rep.) C187#5 (1990) 228Google Scholar
  36. [25]
    E. G. Lierke and G. Griehammer: Ultrasonic (1967 Oct.) 246;Google Scholar
  37. [25a]
    A. de Bellefon et al.: “Superconductive Particle Detectors” ed. A. Barone (World Scientific, 1988) 241.Google Scholar
  38. [26]
    L. Gonzalez-Mestres and D. Perret-Gallix: “Low Temperature Detectors for Neutrinos and Dark Matter II” ed. L. Gonzalez-Mestres and D. Perret-Gallix (Editions Frontieres, 1988) 297.Google Scholar
  39. [27]
    M. C. Steel: Phys. Rev. 78 (1950) 791.ADSCrossRefGoogle Scholar
  40. [28]
    T. Ebisu and T. Watanabe: “Low Temperature Detectors for Neutrinos and Dark Matter II” ed. L. Gonzalez-Mestres and D. Perret-Gallix (Editions Frontieres, 1988) 329;Google Scholar
  41. [28a]
    T. Ebisu, N. Nakagawa and T. Ebisu: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 61.Google Scholar
  42. [29]
    M. Le Gros et al.: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 91.Google Scholar
  43. [30]
    T. E. Faber: Proc. R. Soc, London A219 (1953) 75.CrossRefGoogle Scholar
  44. [31]
    See, for instance, Fig. 2 in A. de Bellefon et al.: “Low Temperature Detectors for Neutrinos and Dark Matter” ed. K. Pretzl, N. Schmitz and L. Stodolsky (Springer Verlag, 1987) 59.CrossRefGoogle Scholar
  45. [32]
    A. de Bellefon et al.: “Low Temperature Detectors for Neutrinos and Dark Matter II” ed. L. Gonzalez-Mestres and D. Perret-Gallix (Editions Frontieres, 1988) 425;Google Scholar
  46. [32a]
    A. de Bellefon et al.Nucl. Instrum. Meth. A277 (1989) 211.ADSCrossRefGoogle Scholar
  47. [33]
    D. S. McLachlan and J. Feder: Rev. Sei. Instrum. 39 (1968) 1340.ADSCrossRefGoogle Scholar
  48. [34]
    F. v. Feilitzsch et al.: “Low Temperature Detectors for Neutrinos and Dark Matter” ed. K. Pretzl, N. Schmitz and L. Stodolsky (Springer Verlag, 1987) 94;CrossRefGoogle Scholar
  49. [34a]
    W. Seidel et al.: Rev. Sei. Instrum. 58 (1987) 1471.ADSCrossRefGoogle Scholar
  50. [35]
    See, for instance, O. V. Lounasmaa: “Experimental Principles and Methods Below 1 K”, (Academic Press, 1974).Google Scholar
  51. [36]
    M. Le Gros et al.: “Low Temperature Detectors for Neutrinos and Dark Matter” ed. K. Pretzl, N. Schmitz and L. Stodolsky (Springer Verlag, 1987) 37.CrossRefGoogle Scholar
  52. [37]
    See, for instance, Fig.2 in M. Chmielowski et al.: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 99.Google Scholar
  53. [38]
    T. Ebisu et al.: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 61.Google Scholar
  54. [39]
    C. P. Bean et al.: J. Appl. Phys. 30 (1959) 1976.ADSCrossRefGoogle Scholar
  55. [40]
    T. Ebisu and T. Watanabe: “Low Temperature Detectors for Neutrinos and Dark Matter” ed. K. Pretzl, N. Schmitz and L. Stodolsky (Springer Verlag, 1987) 329.Google Scholar
  56. [41]
    T. Ebisu et al.: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 61;Google Scholar
  57. [41a]
    T. Ebisu et al.: J. Phys. Soc, Jpn. 60 (1991) 1415.ADSCrossRefGoogle Scholar
  58. [42]
    M. C. Steel: Phys. Rev. 78 (1950) 791.ADSCrossRefGoogle Scholar
  59. [43]
    T. Ebisu and T. Watanabe: Rev. Sci. Instrum. 61 (1990) 921.ADSCrossRefGoogle Scholar
  60. [44]
    G.F. Knoll: “Radiation Detection and Measurement” (John Wiley & Sons, Inc., 1979), Chap.2.Google Scholar
  61. [45]
    G. Klipping: “VDI: Lehrgangshandbuch Kryotechnik” (2nd ed. 1977), Chap.3.Google Scholar
  62. [46]
    T. E. Faber: Proc. R. Soc, London, A219 (1953) 75.CrossRefGoogle Scholar
  63. [47]
    K. Mendelssohn: Prog. Low Temp. Phys. 1 (1955) 184.CrossRefGoogle Scholar
  64. [48]
    M. Frank, P. Freund, J. Gebauer, K. Pretzl, A. Singsaas and L. Stodolsky: MPI-PAE/Exp.El. 207 (Aug.1989), to appear in Nucl. Instrum. Methods.Google Scholar
  65. [49]
    M. Frank, P. Freund, J. Gebauer, A. Singsaas and L. Stodolsky: Phys. Lett. B230 (1989) 159.CrossRefGoogle Scholar
  66. [50]
    T. Ebisu et al.: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 61.Google Scholar
  67. [51]
    T. Ebisu et al.: “Low Temperature Detectors for Neutrinos and Dark Matter III” ed. L. Brogiato, D. V. Camin and E. Fiorini (Editions Frontieres, 1990) 61;Google Scholar
  68. [51a]
    T. Ebisu et al.: J. Phys. Soc, Jpn. 60 (1991) 1415.ADSCrossRefGoogle Scholar
  69. [52]
    The present authors owe the measurement to Dr. Takayuki Watanabe and Dr. Kenji Matsuoka.Google Scholar
  70. [53]
    T. Ebisu and T. Watanabe: to appear in Low Temp. Phys. (1993).Google Scholar
  71. [54]
    The present authors thank Prof. G. Waysand for offering them tin micrograins. A sample granule used in this experiment was selected out of a collection of the grains.Google Scholar
  72. [55]
    P. Freund, J. Gebauer and L. Stodolsky, “Low Temperature Detectors for Neutrinos and Dark Matter IV” ed. N. Booth and G. Salmon (Editions Frontieres, 1992) 11.Google Scholar
  73. [56]
    A. K. Drukier and L. Stodolsky: Phys. Rev. D30 (1984) 2295.ADSCrossRefGoogle Scholar
  74. [57]
    See, for instance, O.V. Lounasmaa: “Experimental Principles and Methods Below 1 K” (Academic Press, 1974) Chap. 3.Google Scholar

Copyright information

© Springer Japan 1994

Authors and Affiliations

  • Takeo Ebisu
    • 1
  • Tadashi Watanabe
    • 2
  1. 1.Department of PhysicsKobe UniversityJapan
  2. 2.Department of Information SystemsTokyo University of Information SciencesJapan

Personalised recommendations