Advertisement

Indium Solar Neutrino Experiments

  • Yoichiro Suzuki
  • Kunio Inoue

Abstract

The possibility of detecting low-energy solar neutrinos through inverse β-decay in 115In was first discussed by R. S. Raghavan [1] in 1976. An indium experiment has unique features in that it is possible to measure the energy spectrum of solar neutrinos above 125 keV in real time. Although a variety of ideas concerning indium detectors have been discussed from time to time, and sophisticated ideas have been presented on various occasions, no practical designs for indium detectors have yet been demonstrated. We focus on discussions of problems that stand in the way of realizing a viable experiment in section 3. A survey of past and present development projects of the detector is given in section 4. A practical detector design and detailed background considerations for a dedicated detector for 7Be-pep neutrino detection are given in section 5.

Keywords

Energy Resolution Capture Rate Solar Neutrino Liquid Scintillator Indium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Raghavan, Phys. Rev. Lett. 37, 259 (1976).ADSCrossRefGoogle Scholar
  2. [2]
    J. N. Bahcall and R. K. Ulrich, Rev. Mod. Phys., 60, 297 (1988) and references therein.ADSCrossRefGoogle Scholar
  3. [3]
    J. N. Bahcall, “Neutrino Astrophysics”, Cambridge University Press (1989).Google Scholar
  4. [4]
    S. P. Mikheyev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985);Google Scholar
  5. [4a]
    L. Wolfenstein, Phys. Rev. D17, 2369 (1978);ADSGoogle Scholar
  6. [4a]
    L. Wolfenstein, Phys. Rev. D20, 2634 (1979).ADSGoogle Scholar
  7. [5]
    The tables of M. E. Rose, in Beta and Gamma Spectroscopy, edited by K. Siegbahn(North-Holland, Amsterdam, 1955), p875 was used in the calculation made by R. Raghavan’s 1976 paper [1].Google Scholar
  8. [6]
    R. Raghavan, Phys. Rev. Lett. 37, 259 (1976).ADSCrossRefGoogle Scholar
  9. [7]
    J. Rapaport et al., Phys. Rev. Letts. 54, 2325 (1985).ADSCrossRefGoogle Scholar
  10. [8]
    L. W. Alvares, Physics Notes, Memo No. 767, Lawrence Radiation Lab (1973).Google Scholar
  11. [9]
    R. S. Raghavan, in Proceedings of Informal Conference on Status and Future of Solar Neutrino Research, edited by G. Friedlander (Brookhaven National Laboratory) Report No. 50879, Vol 2, p1 (1978).Google Scholar
  12. [10]
    W. C. Haxton, Phys. Rev. C38, 2474 (1988).ADSGoogle Scholar
  13. [11]
    M. Cribier et al., Nucl. Instr. and Methods, A265, 574 (1988).ADSCrossRefGoogle Scholar
  14. [12]
    L. Pfeiffer et al., Phys. Rev. Lett. 41, 63 (1978).ADSCrossRefGoogle Scholar
  15. [13]
    L. Pfeiffer et al. , Phys. Rev. C19, 1035 (1979).ADSGoogle Scholar
  16. [14]
    A. G. D. Payne and N. E. Booth, Nucl. Instr. and Meth. A288, 632 (1990).ADSCrossRefGoogle Scholar
  17. [15]
    A. K. Drukier and R. Nest, Nucl. Instr. and Methods, A239, 605(1985).ADSCrossRefGoogle Scholar
  18. [16]
    Y. Suzuki et al., Nucl. Instr. and Methods, A293, 615 (1990).ADSCrossRefGoogle Scholar
  19. [17]
    K. Inoue et al. ICRR-Report-252–91–21, ICRR Univ. of Tokyo, August, 1991.Google Scholar
  20. [18]
    Dojindo Laboratories.Google Scholar
  21. [19]
    InCl3–4H2O(Indium tri-chloride tetra hydrate) is also resolved in water [see [16]]. The maximum indium loading of 35% was actually obtained. This indium contained water is very transparent and the density is 1.85g/cm3. The index of reflection is about 1.7. By adding CeCl3 to the indium loaded water as a wavelength shifter, 360 nm light emission through an 260 nm excitation by a xenon lump was obtained. The indium loaded heavy water can be used as a Cherenkov detector with Ce activator. But this cannot be used as a scintillator since the liquid does not have an energy transfer property.Google Scholar
  22. [20]
    R. S. Raghavan, in Proc. Conf. on Status and Future of Solar Neutrinos, ed by G. Friedlander(Brookhaven National Laboratory Report BNL-50879, 1979) vol. II, p1.Google Scholar
  23. [21]
    M. Spiro, in Proc. 4th Moriond Workshop on Massive Neutrinos in Astrophysics and in Particle Physics, ed. by Tran Thanh Van (Editions Frontieres, 1984) p311.Google Scholar
  24. [22]
    R. S. Raghavan, in Proc. of Neutrino ’81, ed. by R. J. Cenece et al. (Univ. of Hawaii, 1981) Vol I, p27.Google Scholar
  25. [23]
    Y. Suzuki, Report of Grant-in-Aid for Scientific Research, 1988, The Ministry of education, Science and Culture.Google Scholar
  26. [24]
    L. Gonzalez-Mestres and D. Perret-Gallix, LAPP-EXP-87–03.Google Scholar
  27. [25]
    K. Oka and H. Unoki, J. of Crystal Growth 64, 385 (83).Google Scholar
  28. [26]
    F. J. Avella et al., Soc. Solid State Sci. 114, 613 (1968).Google Scholar
  29. [27]
    L. Gonzalez-Mestres, in Low Temperature detectors for Neutrinos and Dark Matter IV, ed. by N. E. Booth and G. L. Salmon, (Editions Frontieres, 1992), p471.Google Scholar
  30. [28]
    M. Avenier et al., Nucl. Phys. B (Proc. Suppl.) 28A, 496, (1992).ADSCrossRefGoogle Scholar
  31. [29]
    T. Inagaki, Proc of the first workshop on solar neutrino detection, KEK Report 86–7, December 1986, ed. by M. Sakuda and Y. Suzuki.Google Scholar
  32. [30]
    D. R. Kania et al., Appl. Phys. Lett., 44 (1984)105, and references therein.ADSCrossRefGoogle Scholar
  33. [31]
    Y. Suzuki, Proc. of the Vllth Moriond Workshop, Neutrinos and Exotic phenomena in Particle Physics and in Astrophysics, Les Arcs, Savoie, January 23–30, 1988.Google Scholar
  34. [32]
    Y. Suzuki et al., Nucl. and Instr. and Method, A275, 142 (1989).ADSCrossRefGoogle Scholar
  35. [33]
    J. C. Lund et al., Nucl. Instr. and Meth. A272, 885 (1988).ADSCrossRefGoogle Scholar
  36. [34]
    G. Waysand, Proc. of the Moriond workshop on Massive Neutrinos, January 1984, Ed. by J. Tran Thanh Van, p319.Google Scholar
  37. [35]
    A. de Bellefon and P. Espigat, LPC 86/22.Google Scholar
  38. [36]
    L. Gonzalez-Mestres and D. Perret-Gallix, LAPP-EXP-84–05-TH-112.Google Scholar
  39. [37]
    L. Gonzalez-Mestres and D. Perret-Gallix, LAPP-EXP-88–01.Google Scholar
  40. [38]
    Booth et al., in Solar Neutrinos and Neutrino Astronomy, ed by M. L. Cherry et al., AIP Conf. Proc. No.126, p216 (1985).Google Scholar
  41. [39]
    N. E. Booth, Sci. Prog. Oxf. 71, 563 (1987).Google Scholar
  42. [40]
    N. E. Booth, Appl. Phys. Lett. 50, 293 (1987).ADSCrossRefGoogle Scholar
  43. [41]
    N. E. Booth, in Proc. Int. Symposium on Neutrino Astrophysics, ed by Y. Suzuki and K. Nakamura, Kamioka/Takayama, October (1992).Google Scholar
  44. [42]
    C. A. Klein, J. Appl. Phys. 39, 2029 (1968).ADSCrossRefGoogle Scholar
  45. [43]
    D. J. Goldie, in X-ray Detection by Superconducting Tunnel Junctions, ed. by A. Barone et al., (World Scientific,1991), p.98.Google Scholar
  46. [44]
    D. J. Goldie et al., in Low Temperature Detectors for Neutrinos and Dark Matter IV, ed. by N.E. Booth and G. L. Salmon (Editions Frontieres, 1992), p.245.Google Scholar
  47. [45]
    A. de Bellefon et al., DPhPE 89–17.Google Scholar

Copyright information

© Springer Japan 1994

Authors and Affiliations

  • Yoichiro Suzuki
    • 1
  • Kunio Inoue
    • 1
  1. 1.Institute for Cosmic Ray ResearchUniversity of TokyoJapan

Personalised recommendations