Skip to main content

Reperfusion Injury in Patients with Acute Myocardial Infarction

Plasma Free-Radical Scavenger Activity Is a Factor Involved in Reducing the Infarct Size Following Successful Reperfusion

  • Chapter
Cardiac Adaptation and Failure

Summary

It has been shown in the clinical situation that the infarct size varies in patients with acute myocardial infarction after successful reperfusion, even if the factors determining the infarct size, i. e., area at risk, time from onset to reperfusion, or collaterals at the onset, were the same. The reasons for this variability remain unknown. In this study, we attempted to clarify one such reason. A group of 68 patients with first anterior acute myocardial infarction with successful reperfusion was divided into three subgroups according to the infarct size in proportion to time from the onset to reperfusion: the “large” group (n = 24), the “standard” group (n = 18), and the “small” group (n = 26). There were no significant differences among the three groups in patients’ characteristics, the area at risk, time from onset to reperfusion, and collateral grade at the initial angiography. The infarct size (mean ± SE) determined by thallium-201 single photon emission computed tomography (SPECT) of the large group (1479 ± 106 units) was significantly greater than that of both the small group (323 ± 74 units) and the standard group (735 ± 117). Significant difference was observed among the three groups in the plasma free-radical scavenger activity, one of the factors involved in determining the infarct size: the plasma free-radical scavenger activity in the large group (24.1 ± 0.7NU/1) was significantly lower than that of both the standard group (27.0 ± 1.0NU/1) and the small group (29.9 ± 1.3NU/1). These results suggested that the biological free-radical scavenger system prevented the myocardial reperfusion injury caused by the free-radical generation at the time of reperfusion, thereby reducing the infarct size. The variations in infarct size in the clinical situation might reflect the individual differences in the free-radical scavenger activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simoons ML, Serruys PW, Van den Brand M, Res J, Verheugt FWA, Krauss XH, Remme WJ, Bar F, de Zwaan C, van der Laarse A, Vermeer F, Lubsen J (1986) Early thrombolysis in acute myocardial infarction: limitation of infarct size and improved survival. J Am Coll Cardiol 7:717–728

    Article  PubMed  CAS  Google Scholar 

  2. Sheehan FH, Doerr R, Schmidt WG, Bolson EL, Uebis R, von Essen R, Effert S, Dodge HT (1988) Early recovery of left ventricular function after thrombolytic therapy for acute myocardial infarction: an important determinant of survival. J Am Coll Cardiol 12:289–300

    Article  PubMed  CAS  Google Scholar 

  3. Van der Werf Arld AER 1988 Intraveus plasmigen activator and size of infarct left ventricular function and survival in acute myocardial infarction. Br Med J 2971374–1379

    Google Scholar 

  4. O’Rourke M, Baron D, Keog A, Kelly R, Nelson G, Barnes C, Raftos J, Graham K, Hillman K, Newman H, Healey J, Woolridge J, Riverrs J, White H, Whitlock R, Norris R (1988) Limitation of myocardial infarction by early infusion of recombinant tissue-type plasminogen activator. Circulation 77:1311–1315

    Article  PubMed  Google Scholar 

  5. Pepine CJ, Prida X, Hill JA, Feldman RL, Conti R (1984) Percutaneous transluminal coronary angioplasty in acute myocardial infarction. Am Heart J 107:820–822

    Article  PubMed  CAS  Google Scholar 

  6. Hearse DJ (1977) Reperfusion of the ischemic myocardium. J Mol Cell Cardiol 9:605–616

    Article  PubMed  CAS  Google Scholar 

  7. Braunwald E, Kloner A (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76:1713–1719

    Article  PubMed  CAS  Google Scholar 

  8. Hammond B, Hess ML (1985) The oxygen free radical system: potential mediator of myocardial injury. J Am Coll Cardiol 6:215–218

    Article  PubMed  CAS  Google Scholar 

  9. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR (1984) Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 54:277–284

    Article  PubMed  CAS  Google Scholar 

  10. Werns SW, Shea MJ, Driscoll EM, Cohen C, Abrams GD, Pitt B, Lucchesi (1985) The independent effects of oxygen radical scavengers on canine infarct size. Reduction by superoxide dismutase but not catalase. Circ Res 56:895–898

    Article  PubMed  CAS  Google Scholar 

  11. Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM (1985) Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17:145–152

    Article  PubMed  CAS  Google Scholar 

  12. Romson JL, Hook BG, Kunkel SL, Abrams GD, Schort MA, Lucchesi BR (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023

    Article  PubMed  CAS  Google Scholar 

  13. Werns SW, Brinker J, Gruber J, Rothbaum D, Heuser R, George B, Burwell L, Kereiakes D, Mancini GBJ, Flaherty A (1989) A randomized, double-blind trial of recombinant human superoxide dismutase (SOD) in patients undergoing PTCA for acute MI. Circulation 80[Suppl II]:II213

    Google Scholar 

  14. Reimer KA, Jennings RB (1979) The “wave front phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  15. Jennings RB, Reimer KA (1983) Factors involved in salvaging ischemic myocardium: Effect of reperfusion of arterial blood. Circulation 68[Suppl. I]:I25

    PubMed  CAS  Google Scholar 

  16. Reimer KA, Lowe JE, Rasmussen MM, Jennings R (1977) The wave front phenomenon of ischemic cell death. I. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794

    Article  PubMed  CAS  Google Scholar 

  17. Saito Y, Yasuno M, Ishida M, Suzuki K, Matoba Y, Emura M, Takahashi M (1985) Importance of coronary collaterals for restoration of left ventricular function after intracoronary thrombolysis. Am J Cardiol 55:1259–1263

    Article  PubMed  CAS  Google Scholar 

  18. Kodama K, Hirayama A, Komamura K (1989) Human plasma superoxide dismutase (SOD) activity on reperfusion injury with successful thrombolysis in acute myocardial infarction. Jpn J Med 28:202–206

    Article  PubMed  CAS  Google Scholar 

  19. Judkins MP (1967) Selective coronary angiography: a percutaneous transfemoral technique. Radiology 89:815–824

    PubMed  CAS  Google Scholar 

  20. Dodge HT, Sandler H, Baxley WA, Hawley RR (1966) Usefulness and limitation of radiographic methods for determining left ventricular volume. Am J Cardiol 18:10–24

    Article  PubMed  CAS  Google Scholar 

  21. Sheehan FH, Bolson EL, Dodge HT, Mathey DG, Schofer J, Woo HW (1986) Advantages and applications of the centerline method for characterizing regional ventricular function. Circulation 74:293–305

    Article  PubMed  CAS  Google Scholar 

  22. Hirayama A, Adachi T, Asada S, Mishima M, Nanto S, Kusuoka H, Yamamoto K, Matsumura Y, Hori M, Inoue M, Kodama K (1993) Late reperfusion for acute myocardial infarction limits the dilatation of left ventricle without the reduction of infarct size. Circulation 88:2565–2574

    Article  PubMed  CAS  Google Scholar 

  23. Hirayama A, Mishima M, Nishida K, Kodama K (1993) Preangina and plasma radical scavenger activity limit the size of infarct in patients with successful thrombolysis. Jpn Circ J 57[Suppl IV]:1352–1355

    Article  PubMed  Google Scholar 

  24. Elstner EF, Heupel A (1976) Inhibition of nitrate formation from hydroxylamine-chloride: Simple assay for superoxide dismutase. Arch Biochem 70:616–620

    CAS  Google Scholar 

  25. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  PubMed  CAS  Google Scholar 

  26. Tiefenbrunn AJ, Sobel BE (1992) Timing of coronary recanalization: Paradigm, paradoxes, and pertinence. Circulation 85:1259–1263

    Article  Google Scholar 

  27. Hoshida S, Kuzuya T, Fuji H, Yamashita N, Oe H, Hori M, Suzuki K, Taniguchi N, Tada M (1993) Sublethal ischemica alters myocardial antioxidant activity in the canine heart. Am J Physiol 264:H33–H39

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Japan

About this chapter

Cite this chapter

Kodama, K., Hirayama, A. (1994). Reperfusion Injury in Patients with Acute Myocardial Infarction. In: Hori, M., Maruyama, Y., Reneman, R.S. (eds) Cardiac Adaptation and Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67014-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67014-8_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67016-2

  • Online ISBN: 978-4-431-67014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics