Skip to main content

Cellular Adaptation in Hibernating Myocardium in the Human

  • Chapter
Cardiac Adaptation and Failure

Summary

The aim of this study was to investigate morphologic changes in chronic hibernation. Light and electron microscopy were performed on myocardium derived from the anterior wall of the left ventricle of 165 patients during coronary artery bypass grafting. The changes seen in a substantial part of the cardiomyocytes corresponded to “dedifferentiation” rather than atrophic “degeneration”. The affected cardiomyocytes showed a partial to complete loss of sarcomeres, sarcoplasmic reticulum, and T-tubules and presented an abundant amount of glycogen, and lots of small mitochondria. The volume of the cells was similar to that of normal cells. The number of the affected cells was consistently higher in endocardial parts than in epicardial ones. The cell changes occurred in the myocardium of patients both with and without a previous infarction. A significant relationship was found in noninfarcted patients between the presence of affected cells and the amount of connective tissue. It is proposed that myocardial segments in which these structural changes prevail will not recover immediately after revascularization but that they might show a delayed recovery of function, because structural remodeling requires time in order to regain sufficient contractile material and to normalize the amount of connective tissue between the cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation (Suppl V) 72:123–135

    Google Scholar 

  2. Horn HR, Teichholz LE, Cohn PF, Herman MV, Gorlin R (1974) Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine. Circulation 49:1063–1071

    Article  CAS  PubMed  Google Scholar 

  3. Bodenheimer MM, Banka VS, Hermann GA, Trout RG, Pasdar H, Helfant RH (1976) Reversible asynergy. Histopathologic and electrographic correlations in patients with coronary artery disease. Circulation 53:792–796

    Article  CAS  PubMed  Google Scholar 

  4. Stinson EB, Billingham ME (1977) Correlative study of regional left ventricular histology and contractile function. Am J Cardiol 39:378–383

    Article  CAS  PubMed  Google Scholar 

  5. Walter P, Schwarz F, Becker V, Schaper J, Flameng W, Hehrlein F (1980) Morphology of poorly contracting ventricle in patients with coronary artery disease. Thorac Cardiovasc Surgeon 28:177–183

    Article  CAS  Google Scholar 

  6. Rahimtoola SH (1982) Coronary bypass surgery for chronic angina. A perspective. Circulation 65:225–241

    Article  CAS  PubMed  Google Scholar 

  7. Schelbert HR (1991) Positron emission tomography for the assessment of myocardial viability. Circulation (Suppl I) 84: I122–I131

    CAS  PubMed  Google Scholar 

  8. Schelbert HR (1991) Myocardial scar or hibernating myocardium? The role of positron emission tomography. In: Bulla N (ed) LV function in stunned and hibernating myocardium. Proc Symp 13th Congress European Society of Cardiology, Amsterdam, Excerpta Medica, pp 56–68

    Google Scholar 

  9. Takeishi Y, Tono-oka I, Kubota I, Ikeda K, Masakane I, Chiba J, Abe S, Tsuiki K, Komatani A, Yamaguchi, I, Washio M (1991) Functional recovery of hibernating myocardium after coronary bypass surgery: Does it coincide with improvement in perfusion? Am Heart J 122:665–670

    Article  CAS  PubMed  Google Scholar 

  10. Brunken R, Tillisch J, Schwaiger M, Child JS, Marshall R, Mandelkern M, Phelps ME, Schelbert HR (1986) Regional perfusion glucose metabolism and wall motion in chronic electrocardiographic Q-wave infarctions. Evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 73:951–963

    Article  CAS  PubMed  Google Scholar 

  11. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert HR (1986) Prediction of cardiac wall motion abnormalities predicted by using positron tomography. N Engl J Med 36:1995–1999

    Google Scholar 

  12. Rahimtoola Sh (1989) The hibernating myocardium. Am Heart J 117:211–221

    Article  CAS  PubMed  Google Scholar 

  13. Ross JJ (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083

    Article  PubMed  Google Scholar 

  14. Tubau JF, Rahimtoola SH (1992) Hibernating myocardium: a historical perspective. Cardiovasc Drugs Ther 267-271

    Google Scholar 

  15. Braunwald E, Rutherford JD (1986) Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium.” J Am Coll Cardiol 8:1467–1470

    Article  CAS  PubMed  Google Scholar 

  16. Kloner RA, Przyklenk K, Patel B (1989) Altered myocardial states. Am J Med [Suppl A] 86:14–22

    Article  CAS  PubMed  Google Scholar 

  17. Flameng W, Wouters L, Sergeant P, Lewi P, Borgers M, Thoné F, Suy R (1984) Multivariate analysis of angiographic, histologic, and electrocardiographic data in patients with coronary heart disease. Circulation 70:7–17

    Article  CAS  PubMed  Google Scholar 

  18. Thiedemann KU (1979) Ultrastructure in chronic ischemia. Studies in human hearts. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North Holland Biomedical Press, Amsterdam, pp 675–716

    Google Scholar 

  19. Depré C, Melin JA, Essamri B, Grandin C, Wijns W, Borgers M (1991) Ultrastructural correlates of flow—metabolism mismatch pattern on positron emission tomography. Circulation 84[Suppl II]:II90

    Google Scholar 

  20. Borgers M, Flameng W (1992) Morphologic identification of chronic hibernating myocardium in man. Circulation 86[Suppl I]:I438

    Google Scholar 

  21. Shivalkar B, Mortelmans L, Schiepers C, Borgers M, Nuyts J, Bormans G, Flameng W (1992) Glycogen storage in chronically hypoperfused myocardium associated with maintained FDG uptake. Circulation 86[Suppl I]:I417

    Google Scholar 

  22. Vanoverschelde JLJ, Wijns W, Depré C, Essamri B, Hendrickx R, Borgers M, Bol A, Melin J (1993) Mechanisms of chronic regional postischemic dysfunction in humans: New insights from the study on non-infarcted collateral dependent myocardium. Circulation 87:1513–1523

    Article  CAS  PubMed  Google Scholar 

  23. Borgers M, Thoné F, Wouters L, Ausma J, Shivalkar B, Flameng W (1993) Structural correlates of regional myocardial dysfunction in patients with critically coronary artery stenosis: chronic hibernation? Cardiovasc Pathol 2:237–245

    Article  Google Scholar 

  24. Vandeplassche G, Hermans C, Thoné F, Borgers M (1991) Stunned myocardium has increased mitochondrial NADH oxidase and ATPase activities. Cardioscience 2:47–53

    CAS  PubMed  Google Scholar 

  25. Stull JT, Mayer SE (1979) Biochemical mechanisms of adrenegic and cholinergic regulation of myocardial contractility. In: Berne RM et al (eds) Handbook of physiology, sect 2: the cardiovascular system. American Physiological Society, Bethesda, Maryland, vol I, pp 741–774

    Google Scholar 

  26. Harary I (1979) Biochemistry of cardiac development: in vivo and in vitro studies. In: Berne RM et al (eds) Handbook of physiology, sect 2: the cardiovascular system. American Physiological Society, Bethesda, vol I, pp 43–60

    Google Scholar 

  27. Borgers M, De Nollin S, Thoné F, Wouters L, Van Vaeck L, Flameng W (1993) Distribution of calcium in a subset of chronic hibernating myocardium in man. Histochem J 25:312–318

    Article  CAS  PubMed  Google Scholar 

  28. Borgers M, Flameng W (1993) Morphology of the acute and chronic ischemic myocardium in man. In: Piper HM, Preusse CJ (eds) Ischemia-reperfusion in cardiac surgery. Kluwer Academic, pp 353-375

    Google Scholar 

  29. Manasek FJ (1968) Mitosis in developing cardiac muscle. J Cell Biol 37:191–196

    Article  CAS  PubMed  Google Scholar 

  30. Van der Loop FTL, Schaart G, Langmann W, Ramaekers FCS, Viebahn Ch (1992) Expression and organization of muscle specific proteins during the early development stages of the rabbit heart. Anat Embryol 185:439–450

    Article  PubMed  Google Scholar 

  31. Schaart G, Viebahn Ch, Langmann W, Ramaekers F (1989) Desmin and titin expression in early postimplantation mouse embryos. Development 107:585–596

    CAS  PubMed  Google Scholar 

  32. Schaart G, Pieper FR, Kuijpers HJH, Bloemendal H, Ramaekers FCS (1991) Baby hamster kidney (BHK-21/C13) cells can express striated muscle type proteins. Differentiation 46:105–115

    Article  CAS  PubMed  Google Scholar 

  33. Fischman DA (1986) Myofibrillogenesis and the morphogenesis of skeletal muscle. In: Engel AG, Banker BQ (eds) Myology: basic and clinical. McGraw-Hill, New York, pp 5–30

    Google Scholar 

  34. Chien KR, Zhu H, Knowlton KU, Miller-Hance W, Van Bilsen M, O’Brien TX, Evans SM (1993) Transcriptional regulation during cardiac growth and development. Annu Rev Physiol 55:77–95

    Article  CAS  PubMed  Google Scholar 

  35. Borisov AB (1991) Myofibrillogenesis and reversible disassembly of myofibrils as adaptive reactions of cardiac muscle cells. Acta Physiol Scand S559:71–80

    Google Scholar 

  36. Marban E (1991) Myocardial stunning and hibernation. The physiology behind the colloquialism. Circulation 83:681–688

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Japan

About this chapter

Cite this chapter

Ausma, J., Ramaekers, F., Shivalkar, B., Thone, F., Flameng, W., Borgers, M. (1994). Cellular Adaptation in Hibernating Myocardium in the Human. In: Hori, M., Maruyama, Y., Reneman, R.S. (eds) Cardiac Adaptation and Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67014-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67014-8_7

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67016-2

  • Online ISBN: 978-4-431-67014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics